VOLUME NR 4
PHYSICAL CHEMISTRY
UDK 543.872
S. N. Rasulova, V. P. Guro
KINETICS OF REAGENT OXIDATION OF MOLYBDENUM SULFIDE IN SULPHATE ELECTROLYTES. PART II
Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Tashkent, Uzbekistan
Abstract. Background. The sulfide phase of ore minerals is susceptible to passivation under oxidizing conditions of hydrometallurgy. Overcoming their passivation is an indispensable condition for the technology of their processing.
Purpose: on the example of the behavior of Mo-concentrate, copper sulfide, sulfide flotation concentrate Kokpatas, in nitric acid and hypochlorite electrolytes to describe the nature of the products formed and the kinetics of their dissolution.
Methodology. Samples of Mo-concentrate (38% Mo in the MoS2 phase), synthetic copper sulfide (100% CuS), Kokpatas flotation concentrate (with pyrite and arsenopyrite - up to 97% in the sulfide part) were used. The concentration of Cu (II), Fe (III), Mo (VI), Re (VII) ions in solutions - photocolorimetric and spectrometric (AAC Perkin-Elmer 3030B, ICP-Agilent 7500 IСP MS); kinetic measurements were performed with powder (s : l = 1: 7 and 1:75) and compact disk-like samples of sulfide minerals,
Originality. Using the example of oxidation of Mo-concentrate samples in a sulfate-hypochlorite electrolyte, during 1800 sec, the phase disruption of the sulfide compounds Mo, Cu was established, with the transformation of their fraction into the oxide-sulfate phase.
Findings. By means of Rotating Disc Electrode method the kinetics of oxidation of a number of minerals in a sulfate-hypochlorite electrolyte was studied in a temperature range of 20-40-70 ° C at atmospheric pressure.
Key words: sulfide minerals, Mo-concentrate, reagent oxidation, leaching, sodium hypochlorite, sulfate background
Highlights:
* kinetics of the oxidation of Mo-concentrate is studied;
* a reagent-oxidizer of sulfides - sodium hypochlorite is used;
* data on changes in a composition of the samples were obtained.
References
1. D Pugaev, M Nicol, G Senanayake. The mechanisms of the passivation of sulfide minerals in oxidative leaching processes. Proceedings of 6th Southern African Base Metals Conference, 2011.- P.39-48.
2. S. Rasulova, V. Guro, M. Ibragimova, E. Safarov. Oxidation and passivation of sulfide ores in gold and molybdenum hydrometallurgy / Сonference proceedings: Metal-2018, 27th International Conference on Metallurgy and Materials. May 23rd-25th 2018. Brno, Czech Republic, EU. P. 1442-1447.
3. Rasulova S.N., Guro V.P., Ibragimova M.A., Safarov Ye.T. Okisleniye i passivatsiya poverkhnosti sul'fidnykh rud // Uzb khim zh., 2018. -No1, S. 15-21.
4. Potashnikov YU.M., Lutsik V.I., Chursanov YU.V. Issledovaniye vzaimodeystviya molibdenita s azotnoy kislotoy // Izvestiya vuzov. Tsvetnaya metallurgiya.–1984.– No 1. – C. 57-61.
5. Bogacheva L.M., Ismatov KH.R. Gidrometallurgicheskaya pererabotka med'soderzhashchikh mineralov. – Tashkent: «Fan», 1989. – 116 s.
6. Lutsik V.I., Potashnikov YU.M., Lutsik V.A. i dr. Izvlecheniye molibdena iz sul'fidnoy rudy shchelochnym rastvorom gipokhlorita natriya / // Izvestiya SO AN SSSR. Ser. khim. nauk. – T. 4. – 1985. – No 11. – S. 49-54.
7. Kruesi, P.R., 1972. Process for the recovery of metals from dissociation of the sulfides. US Patent 3673061.
8. Darjaa, T., Okabe, T. H., Waseda, Y., & Umetsu, Y. (2000). Recovery of Molybdenum from Sulfide Concentrate by Electro-Oxidation and Precipitation. Shigen-to-Sozai, 116(3), 203–210. doi:10.2473/shigentosozai.116.203
9. Cao, Z., Wang, M., Zhong, H., Chen, N.. etc. (2015). Purification of bismuthinite concentrate by selective electro-oxidation of molybdenite. Hydrometallurgy, 154, 95–101. doi:10.1016/j.hydromet.2015.04.012.
10. Rasulova S.N., Guro V.P., Ruziyev U.N., Kadyrova Z.CH., Tursunkulov O.M., Sapayeva A.A. Kinetika reagentnogo okisleniya sul'fida molibdena v sernokislom elektrolite. Chast' 1. // Uzb. khim. zhurn. - 2018. - No6. - S.10-20.
11. Lutsik, V.I. Kinetika gidroliticheskogo i okislitel'nogo rastvo-reniya sul'fidov metallov: monografiya / V.I. Lutsik, A.Ye. Sobolev. Tver' (Rossiya): TGTU, 2009. 140 s.
12. Levich V.G. Fiziko-khimicheskaya gidrodinamika. M.: Fizmatgiz 1959. -699 s.
13. Pleskov V., Filinovskiy V. YU. Vrashchayushchiysya diskovyy elektrod. - M.: Nauka, 1972. – 225 s.
14. Rasulova S.N., Guro V.P., Ibragimova M.A. Razrabotka sposoba elektrokataliticheskogo okisleniya serovodoroda // Kompozitsionniye materialiy. 2018. - No4. 70-73 s.
To cite this article: S. N. Rasulova, V. P. Guro. Kinetics of reagent oxidation of molybdenum sulfide in sulphate electrolytes. Part II // Uzbek chemical journal. -2020. – Nr4. - Pp.3-10.
Received: 16.10.2019; Accepted: 22.04.2020; Published: 13.08.2020
* * *
UDK 66.081:546.561
1B. Z. Esbergenova, 1Sh. Sh. Daminova, 1Z. Ch. Kadirova, 2S. B. Lyapin, 3X. T. Sharipov
SORPTION OF COPPER (II) IONS ON THE MN202 POLYMERIC SORBENT AND IMPREGNATED SOLID EXTRAGENTS
1State Unitary Enterprise "Uzbek-Japanese Youth Center for Innovation", 2IONKH AN RUz, 3State Unitary Enterprise "Fan va tarakkiyot" at TSTU, E-mail: daminova_sh@mail.ru
Abstract. Background. Monitoring the content of heavy metals in environmental objects at the level of their maximum permissible concentrations is an important environmental task. The widely used physicochemical methods do not always provide a direct solution to this problem due to the influence of the matrix composition of the sample on the results of the determinations, as well as low concentrations of the determined elements. Sorption methods meet these requirements, especially with the use of complex-forming sorbents, which ensure selectivity and efficiency when concentrating elements from solutions of complex composition. In this regard, the search and targeted synthesis of highly selective complexing sorbents is an urgent task
Purpose of the study is to study the sorption of copper on polymer matrices (MN202) impregnated with 2-amino-1-methylbenzimidazole, dithizone and benzohydroxamic acid.
Methodology. Sorption of copper (II) ions was studied in a static mode. The pH values were monitored using an ionomer A-121. The microstructure was investigated using an electron microscope with the addition of energy dispersive analysis of EDH. The concentration of copper (II) ions was determined by atomic absorption spectroscopy.
Originality. New sorbents based on MN202 (Purolite) impregnated with organic reagents were obtained and studied, their complexing properties were studied. The optimal conditions for the sorption of Cu2+ ions for the element-sorbent systems are established.
Findings. The process of sorption of copper ions is better described using the Freundlich equation, which allows us to judge the significant contribution of chemical interaction compared with physical adsorption in the sorption process. The sorption mechanism includes both physical adsorption of metal ions on the surface of the adsorbent and strong chemical interaction due to the presence of impregnated ligands in the structure of sorbents, which contributes to an increase in the sorption of metals using synthesized sorbents.
Key words: sorption, solid extractant, kinetics, isotherm, impregnate, copper, Freindlich, Langmuir
Highlights:
* the sorption of copper ions by impregnated P, S, N-groups was studied.
* the equilibrium parameters of sorption are determined
* the relationship between the structure of the complex and sorption properties has been studied.
References
1. Daminova S. S., Kadirova Z. C., Sharipov K. T., Stoyko O. V., Chepulsky S. A., Adewuyi A., Hojamberdiev M. Diisopropyldithiophosphoric acid-impregnated macroporous non-ionogenic styrene-divinylbenzene polymeric sorbent (Porolas) for effective copper extraction // Journal of industrial and engineering chemistry. -2017. 55, -Р. 204-214. doi.org/10.1016/j.jiec.2017.06.047
2. Ansari S. A., Mohapatra P. K. A review on solid phase extraction of actinides and lanthanides with amide based extractants // Journal of Chromatography A. -2017. 1499.–P. 1-20.doi.org/10.1016/j.chroma.2017.03.035
3. Tokalıoğlu Ş., Yılmaz V., Kartal Solid phase extraction of Cu (II), Ni (II), Pb (II), Cd (II) and Mn (II) ions with 1-(2-thiazolylazo)-2-naphthol loaded Amberlite XAD-1180 // Environmental monitoring and assessment. - 2009. 152(1-4). –Р. 369.
4. Daminova S. S., Kadirova Z. C., Sharipov K. T., Talipov S. A., Hojamberdiev M. Alkyl substituents of P, S, N-containing organic ligands influencing the uptake of Au3+ and Pt2+ ions over a hydrophobic hypercrosslinked polymeric sorbent // Polyhedron. - 2020. 114568.doi.org/10.1016/j.poly.2020.114568
5. Moxodoyeva O.B., Myasoyedova G.V., Zaxarchenko Ye.A. Tverdofaznыe ekstragentы dlya konsentrirovaniya i razdeleniya radionuklidov. Novыe vozmojnosti // Radiokhimiya. -2011. -T. 53. -No 1. S.34-41.
6. Guo Y., Zhao H., Han Y., Liu X., Guan S., Zhang Q., Bian X. Simultaneous spectrophotometric determination of trace copper, nickel, and cobalt ions in water samples using solid phase extraction coupled with partial least squares approaches // Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy. -2017. 173.–P. 532-536.doi.org/10.1016/j.saa.2016.10.003
7. Temerdashev Z. А., Konshina Dzh. N., Salov D.I., KonshinV.V. Concentration and X-ray Fluorescence determination of Heavy metals on Impregnated Cellulose Filters // Inorganic Materials. - 2011. - V.47. - No 15. -P. 1-4.
8. Gavrilenko N.A., Saranchina N.V., Gavrilenko M.A. Tverdofazno-spektrofotometricheskoye opredeleniye selena (IV) s ispolzovaniyem ditizona, immobilizovannogo v polimetakrilatnoy matritse // Analitika i kontrol. -2014. 18(4). –S.424-429.
9. Sánchez D. M., Martın R., Morante R., Marın J., Munuera M. L. Preconcentration speciation method for mercury compounds in water samples using solid phase extraction followed by reversed phase high performance liquid chromatography // Talanta. -2000. 52(4). –Р. 671-679.doi.org/10.1016/S0039-9140(00)00416-1
10. Sharipov K.T., Daminova S.S., Kadirova Z.C., Esbergenova B.Z., Khaltursunov E.,Hojamberdiev M. Maximizing the zinc ions removal by organic ligand-stabilized conjugate polysterene macronet material // Microchemical Journal -2020. –V.153. -P.104523. doi.org/10.1016/j.microc.2019.104523
11. Płotka-Wasylka J., Marć M., Szczepańska N., Namieśnik J. New polymeric materials for solid phase extraction // Critical reviews in analytical chemistry. -2017. -V47.-N5. –Р. 373-383. doi.org/10.1080/10408347.2017.1298987
12. Garnovsky D. A. et al. Direct evidence of coordination on the endocyclic nitrogen atom in the adducts of 2-aminoazoles and 2-aminoazines with copper (II) acetate //Inorganica chimica acta. – 1989. – Т. 160. – No. 2. – С. 177-182.
13. Voyutskiy, S.S. Kurs kolloidnoy khimii / S.S. Voyutskiy. – M.: Khimiya, 1976. – 512 s.
14. Hojamberdiev M., Daminova S. S., Kadirova Z. C., Sharipov K. T., Mtalo F., Hasegawa M. Ligand-immobilized spent alumina catalyst for effective removal of heavy metal ions from model contaminated water // Journal of Environmental Chemical Engineering. -2018. 6(4), -P. 4623-4633. doi.org/10.1016/j.jece.2018.06.070
15. Mohammedi H., Miloudi H., Tayeb A., Bertagnolli C., Boos A. Study on the extraction of lanthanides by a mesoporous MCM-41 silica impregnated with Cyanex 272 // Separation and Purification Technology. -2019. 209, 359-367. doi.org/10.1016/j.seppur.2018.07.035
To cite this article: B. Z. Esbergenova, Sh. Sh. Daminova, Z. Ch. Kadirova, S. B. Lyapin, X. T. Sharipov. Sorption of copper (II) ions on the MN202 polymeric sorbent and impregnated solid extragents // Uzbek chemical journal. -2020. – Nr4. - Pp.10-18.
Received: 07.06.2020; Accepted: 24.07.2020; Published: 13.08.2020
* * *
UDK 541.49+547.785.5+543.422.25
1L. N. Gapurova, 1Sh. A. Kadirova, 1D. S. Rakhmonova, 2M. I. Olimova, 3G. K. Aliyeva
SYNTHESIS AND STUDY OF COMPLEX COMPOUNDS OF d-METAL NITRATES WITH 2-AMINOBENIMIDAZOLE
1National University of Uzbekistan named after Mirzo Ulugbek, 2Institute of Chemistry of Plant Substances of the Academy of Sciences of the Republic of Uzbekistan, 3Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Е-mail: lobar-gafurovna@gmail.com
Abstract. Background. The scientific, technical and patent literature currently available provides a sufficient amount of general information on the coordination compounds of biometals with various benzimidazole compositions. However, this information is scattered, and complexation reactions have not been systematically studied. This work is a complete scientific study of the systematic study of the structure and properties of previously unknown coordination compounds of nitrates Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) with 2-aminobenzimidazole.
Purpose. To develop a method for the synthesis of new complex compounds of nitrates Mn(II), Co(II), Ni(II) and Cu(II) with 2-aminobenzimidazole. The study of the composition and structure of complexes by modern physicochemical methods.
Methodology. Elemental, X-ray, thermal analyzes, IR-spectroscopy, quantum-chemical calculation.
Originality. For the first time, nitrate complexes of some 3d-metals based on 2-aminobenzimidazole were synthesized. The composition and structure of the synthesized compounds were studied by elemental, thermal analysis and IR- spectroscopy.
Findings. The quantum chemical method of Gaussian 09 calculated the electronic structures of ligand molecules, determined their geometric parameters, energy characteristics, and based on charge control, the most probable centers of localization of coordination bonds were identified. Methods have been developed for the preparation and synthesis of new complex compounds of nitrates Mn (II), Co (II), Ni (II), Cu (II) and Zn (II) with 2-aminobenzimidazole. The structure of the ligand and complexes was determined by elemental, X-ray, thermal analysis, and IR-spectroscopy
Keywords: 2-aminobenzimidazole, complex compound, quantum chemical calculation, IR-spectroscopy, elemental analysis, Х-ray phase analysis, thermal analysis, composition, structure, properties.
Highlights:
* methodology for the synthesis of complex compounds;
* quantum chemical calculations of 2-aminobenzimidazole;
* structure and structure of complex compounds.
References
1. Schuecker R., John R.O., Jakupec M.A. Arion V.B., Keppler B.K. Water-Soluble Mixed-Ligand Ruthenium(II) and Osmium(II) Arene Complexes with High Antiproliferative Activity // Organomet. Chem. - Washington, 2008.-No 24(27).-P.6587-6595.
2.Lopez-Sandoval H., Londono-Lemos M.E., Garza-Velasco, Raul; Poblano-Melendez I., Granada-Macias P., Gracia-Mora I., Barba-Behrens N. Synthesis, structure and biological activities of cobalt(II) and zinc(II) coordination compounds with 2-benzimidazole derivatives // J. Inorg. Biochem. - NewYork, 2008.-No 5-6(102).-P.1267-1276. http://europepmc.org/article/med/18304644
3. G.N.Lipunova, E.V.Nosova, V.N.Charushin. Fluorine-Containing Benzimidazoles and Their [a]- and [b]Heteroannelated Derivatives: Synthesis and Biological Activity (Review) // Chemistry of Heterocyclic Compounds. 2014. -No50. -Р.764-790. https://link.springer.com/article/ 10.1007/s10593-014-1533-0
4. Rakhmonova D.S., Kadirova Z.CH., Kadirova SH.A. Kristallicheskaya struktura kompleksa khlorida kobal'ta (II) s 3-(benzimidazol-2-il)-propanolom-1 // Universum: Khimiya i biologiya: elektro.nauch.zhurn. 2017. No3(33).
5. Oehlers L., Mazzitelli C.L., Brodbelt J.S., Rodriguez M., Kerwin S. Evaluation of complexes of DNA duplexes and novel benzoxazoles or benzimidazoles by electrospray ionization mass spectrometry // J. Am. Soc. Mass. Spectrom. - New York, 2004.-No 11(15).-P.1593-1603.
6. Bhaskar G., Prabhakar S., Raju N. P., Ramanjaneyulu G.S. Matrix-assisted laser desorption ionization studies on transition metal complexes of benzimidazole thiosemicarbazones // Eur. J. Mass Spectrom. - Chichester, 2007.-No 2(13).-P.135-145.
7. Rakhmonova D.S., Kadirova Z.CH., Kadirova SH.A. Kristallicheskaya struktura kompleksa khlorida kobal'ta (II) s 3-(benzimidazol-2-il)-propanolom-1 // Universum: Khimiya i biologiya: elektro.nauch.zhurn. 2017. No3(33). http://7universum.com/pdf/nature/3(33)/Raxmonova.pdf
8. Tittse L., Aykher T. Preparativnaya organicheskaya khimiya. M.: Mir, 2017. -704 s.
9. Serba P.V., Blinov YU.F., Miroshnichenko S.P. Kvantovo-khimicheskiye raschety v programme Gaussian po kursu “Fizika nizkorazmernykh struktur”. -Taganrog: Izdatel'stvo TTI YUFU, -2012. -S.100.
10. Cimonov A.M., Anisimova V.A. Sintez i prevrashcheniya 2-aminobenzimidazolov // Khimiya geterotsiklicheskikh soyedineniy. 1979. No7. S.867-887.
11. Tarasevich B.N. IK spektry osnovnykh klassov organicheskikh soyedineniy. Spravochnyye materialy – Moskva: MGU, – 2012. – 54 s.
12. Nakamoto K. IK-spektry neorganicheskikh i koordinatsionnykh soyedineniy. M.: Mir. 1996. 204 s.
13. Mirkin L.I. Rentgenostrukturnyy analiz. Inditsirovaniye rentgenogramm. Spravochnoye rukovodstvo. M.: Mir, 1981. – S. 494.
14. Sazanov YU.N. Termicheskiy analiz organicheskikh soyedineniy. - SPb.: Izd-vo Politekh. un-ta, -2016. - S.367.
15. Shatalova T.B., Shlyakhtin O.A., Veryayeva Ye. Metody termicheskogo analiza. - Moskva: 2011. -72 s.
To cite this article: L. N. Gapurova, Sh. A. Kadirova, D. S. Rakhmonova, M. I. Olimova, G. K. Aliyeva. Synthesis and study of complex compounds of d-metal nitrates with 2-aminobenimidazole // Uzbek chemical journal. -2020. – Nr4. - Pp.19-28.
Received: 29.05.2020; Accepted: 04.08.2020; Published: 13.08.2020
* * *
UDK 541.49+547.785.5+543.42
М. А. Pirimova, Sh. A. Kadirova, D. S. Rakhmonova, 1A. A. Ziyayev, 2G. U. ДК УДKhayrullayev
SYNTHESIS AND RESEARCH OF NEW MIXED METAL COMPLEXES Cо (II), Ni (II), Cu (II) AND Mn (II) BASED ON V (V) AND OXADIAZOLEDERIVATIVES
National University of Uzbekistan MirzoUluғbek, Tashkent, 1Institute of Chemistry of Plant Substances of the Academy of Sciences of the Republic of Uzbekistan, 2Navoin State Pedagogical Institute, E-mail: mehri7907@gmail.com
Abstract. Background. According to the synthesis and properties of mixed metal complexes of 3d metals with V (V) and 5-phenyl-1,3,4-oxadiazole-2 (3H) -thione, it has not been reported in the literature. The synthesis of mixed-metal complex compounds opens up new aspects of coordination chemistry.
Purpose. A procedure will be developed for the synthesis of new mixed-metal complexes of Co (II), Ni (II), Cu (II) and Mn (II) chlorides with 5-phenyl-1,3,4-oxadiazole-2 (3H) -thione based on ammonium vanadate. The study of the composition and structure of mixed metal complex compounds with modern physicochemical methods.
Methodology. A technique for the synthesis of mixed-metal complex compounds has been developed. For synthesis, an aqueous solution of ammonium vanadate and metal chlorides was added to the alcohol solution of the ligand (M: M: L: 1: 1: 1: 2 mol), pH = 8. The reaction mixture was heated for 40 minutes.
Originality. А procedure was developed fot the synthesis of new mixed-metal complexes of Cо (II), Ni (II), Cu (II) and Mn (II) chlorides with 5-phenyl-1,3,4-oxadiazole-2(3H)-thione based on ammonium vanadate. Coordinated competing donor centers, electronic and geometric structures of the ligand molecule were studied on the basis of the quantum-chemical software package Gaussian09 LanL2DZ. It was shown that the formation of the complex of ligand-5-phenyl-1,3,4-oxadiazole-2 (3N) -thione is partially coordinated through a localized nitrogen or sulfur atom.
Findings. Coordinated competing donor centers, electronic and geometric structures of the ligand molecule were studied on the basis of the quantum-chemical software package Gaussian09 LanL2DZ. The composition and structure of the synthesized mixed-metal complex compounds were studied using elemental analysis, derivatographic analysis, and IR spectroscopy.
Key words: ligand, complex compounds, oxadiazole, IR-spectroscopy, analysis element,.thermogravimetric analysis, quantum-chemical calculation, composition, structure, property.
Highlights:
* synthesis technique of mixed metal complex compounds;
* quantum chemical calculations of 5-phenyl-1,3,4-oxadiazole-2 (3H) -thione;
* determination of the composition and structure of mixed-metal complexs.
References
1. Antimonova (Volkova) A.N., Petrenko N.I., Shakirov M.M., Pokrovskiy M.A., Pokrovskiy A.G., Shul'ts E.E. Sintez i tsitotoksicheskaya aktivnost' triterpenoidovlupanovogo ryada, soderzhashchikh fragmenty 1,3,4-oksadiazolov // Khimiya prirodnykh soyedineniy. - 2014. - № 6 - S. 883-889. (http://web.nioch.nsc.ru/nioch/templates/purity_iii/files /avtoreferats/Volkova_avtoreferat.pdf)
2. Kanthiah S., Kalusalingam A., Velayutham R., Vimala A., BeyatricksJ. 5-(2-aminophenyl)-1,3,4-oxadiazole-2(3h)-thione derivatives: synthesis,characterization and antimicrobial evaluation// International Journal of Pharmaceutical Sciences Review and Research. -2011. –V.6. –P. 64-67.(https://www.researchgate.net/publication/273885555_5-2-aminophenyl-134-oxadiazole-23H-thione_derivatives_Synthesis_characterization_and_antimicrobial_evaluation)
3. Rahul. R, Rakesh K., Saravanan J. Synthesis, characterization & biological evaluation of 1, 3, 4- oxadiazoles as antioxidant agents// Journal of Innovations in Pharmaceuticals and Biological Sciences. – 2016. –V. 3 (3). –P. 104-113.(http://www.jipbs.com/VolumeArticles/FullTextPDF/234_JIPBSV3I314.pdf)
4. Alisi O., Uzairu A., Abechi E., Idris O. Development of Predictive Antioxidant Models for 1,3,4-Oxadiazoles by Quantitative Structure Activity Relationship//Journal of the Turkish Chemical Society Chemistry. -2019. –V.6(2). –P.103–114. (file:///C:/Users/mcpc12/Downloads/10.18596-jotcsa.406207-655521.pdf)
5. Vlad M., Labadi I., Costisor O.// New HeteronuclearCompleхes in Cu(II)-VO(IV) System Synthesis and Properties of Complexes Containing 4,4’-bipyridine and Oxalato Ion as Ligands//Chem. Bull. “POLITEHNICA” Univ.(Timisoara). -2005. –V.50 (64). –P.58-60. (https://www.academia.edu/6387140/New_Heteronuclear_Complexes_ in_Cu_II_-VO_IV_System._Synthesis_and_Properties_of_Complexes_Containing_4_4-_bipyridine_and_Oxalato_Ion_as_Ligands)
6. Vlad M., Labadi I., Sasca V., SaityL., CostisorO.Synthesis and Thermal Decomposition of the Coordination Polymer of 4,4'- bipyridine and Oxalate Anion with Cu (II) and VO(IV)//Chem. Bull. “POLITEHNICA” Univ.(Timisoara). -2005. –V.51 (65). –P.17-22. (https://www.academia.edu/6387139/Synthesis_and_Thermal_Decomposition_of_the_Coordination_ Polymer_of_4_4-_bipyridine_and_Oxalate_Anion_with_Cu_II_and_VO_IV
7.Simunekova M., Schwendt P, Gyepes R, Krivosudsky L.Heterometallic Copper–Vanadium Compounds: Crystal Structures of Polymers [Cu(im)4(V0O4(mand)2)]nand [Cu(im)4(V2O4((S) mand)2)]n•2nH2O (im=imidazole, mand=mandelato2−)// Journal of Chemical Crystallography. -2019. 5 October. (https://link.springer.com/content/pdf/10.1007/s10870-019-00810-8.pdf)
8.Antar P., Schwendt P., Tariersky J., Gyepes R., Drabik M. Interaction between chilar ions: Synthesis and characterization of tartratovanadates (V) with tris(2,2’-bipyridine) complexes of iron(II) and nickel(II) as cations.//Transition Met Chem. -2014. –V.39. –P.893-900. (https://www.researchgate.net/publication/269047445_ Interaction_between_chiral_ions_ Synthesis_and_characterization_of_tartratovanadatesV_with_tris22'- ipyridine_complexes_of_ironII_and_nickelII_as_cations)
9. Serba P.V., Blinov YU.F., Miroshnichenko S.P. Kvantovo-khimicheskiye raschety v programme Gaussian po kursu "Fizika nizkorazmernykh struktur". - Taganrog: Izd-vo TTI YUFU, -2012. -S.100. (.&aqs=chrome..69i57.1193j0j7&sourceid=chrome&ie=UTF-8)
10. Baranovskiy V.I. Kvantovokhimicheskiye raschety povyshennoy tochnosti. Uchebnoye posobiye. -2015. –C.89. (https://dspace.spbu.ru/bitstream/11701/1486/1/ Расчеты _повышенной.pdf)
11. Tarasevich B.N. IK spektry osnovnykh klassov organicheskikh soyedineniy. Spravochnyye materialy. Moskva. -2012. –S.55.(http://www.chem.msu.su/rus/teaching/tarasevich/Tarasevich_IR_tables_29-02-2012.pdf).
12. Nakamoto K. IK spektry i spektry KR neorganicheskikh i koordinatsionnykh soyedineniy. Monografiya. Per. s angl. k. kh. n. Khristenko L. V., pod red. d. kh. n. prof. Pentina YU. A. — M.: Mir, 1991. — S.536.(https://www.twirpx.com/file/56977/).
13. Bokker YU. Spektroskopiya. Moskva: Tekhnosfera, 2009. -S.528.ISBN 978-5-94836-220-5 (https://www.twirpx.com/file/911047/)
14. Topor N.D., Ogorodova L.P., Mel'chakova L.V. Termicheskiy analiz mineralov i neorganicheskikh soyedineniy. Moskva.: Izdatel'stvo MGU, 1987. —S.190. (https://www.twirpx.com/file/100413/)
15. Sazanov YU.N. Termicheskiy analiz organicheskikh soyedineniy. - SPb.: Izd-vo Politekh. un-ta, -2016. - S.367. (http://www.prometeus.nsc.ru/acquisitions/17-04-11/cont18.ssi).
To cite this article: М. А. Pirimova, Sh. A. Kadirova, D. S. Rakhmonova, A. A. Ziyayev, G. U. ДК УДKhayrullayev. Synthesis and research of new mixed metal complexes Cо (II), Ni (II), Cu (II) and Mn (II) based on V (V) and oxadiazolederivatives // Uzbek chemical journal. -2020. – Nr4. - Pp.28-36..
Received: 28.02.2020; Accepted: 09.06.2020; Published: 13.08.2020
* * *
UDK 541.64.678.745.547.235
1S.Y. Khushvaqtov, 1M.M. Jo’rayev, 2D. J. Bekchanov, 1M.G. Mukhamediev
SORPTION OF COBALT (II) AND CHROMIUM (III) IONS NITROGEN - AND SULFUR-CONTAINING COMPLEXONS BASED ON POLYVINYLCHLORIDE
1National University of Uzbekistan MirzoUluғbek, 2Chirchik State Pedagogical Institute, Uzbekistan, E-mail: suyunkhushvaktov91@gmail.com
Abstract. Background. Nitrogen and sulfur-containing polycomplexes were obtained by amination of sulfocationite obtained on the basis of polyvinylchloride plasticate. The study of the physicochemical properties of these polycomplexes makes it possible to use them in industrial enterprises in order to isolate cobalt (II) and chromium (III) ions.
Purpose. The study of the structure of nitrogen and sulfur-containing polycomplexon obtained by ammunition of sulfocationite and determination of sorption abilities in relation to cobalt (II) and chromium (III) ions from artificial solutions.
Methodology: The structure of the polycomplexon obtained on the basis of polyvinylchloride was studied by IR spectroscopy. A change in the concentration of metal ions in the solution during sorption was observed by spectrophotometry (Mikroplanshet rider Perkin Elmer, USA). The isotherm of sorption of metal ions by a polycomplexon was studied by the Langmuir method.
Originality: The structure of the new nitrogen and sulfur-containing polycomplexon obtained on the basis of polyvinylchloride was confirmed. The patterns of sorption of cobalt (II) and chromium (III) ions on a synthesized sorbent were studied.
Findings: The presence of cation exchange sulfo groups and anion exchange amino groups in the polycomplexon obtained on the basis of amination of sulfocationite is confirmed by IR spectroscopy. The kinetics of sorption of cobalt (II) and chromium (III) ions from aqueous solutions was studied under static conditions, and Langmuir constants were found at various temperatures. Based on the studies, the thermodynamic parameters of the sorption process were found: changes in the values of the isothermal - isobaric potential (ΔG), enthalpy (ΔН) and entropy (ΔS).
Keywords: polyvinylchloride plastic compound, polyethylenepolyamine, polyampholyte, sorption, cobalt ion, chromium ion, kinetics, isotherm, thermodynamic parameters.
Highlights:
* the structure of the polycomplexon based on polyvinylchloride was confirmed;
* studied the sorption ability of the obtained ion exchangers in relation to cobalt (II) and chromium (III) ions in solutions.
References
1. Duffus, J.H. „Heavy metals” – a meaningless term. Pure Applied Chemistry, 2002;Vol. 74,pp. 793-807
2. Diniz, C.V., Doyle, F.M., Martins A.H. Uptake of heavy metals by chelating resins from acidic manganese chloride solution, Minerals Metallurgy Processing, 2000; Vol. 17, pp. 217-222.
3. Ayoub G.M., Semerjian L., Acra A., E.l. Fadel M. and Koopman B. Heavy Metal Removal by Coagulation with Seawater Liquid Bittern. Journal of Environmental Engineering 2001;127: 196–202.
4. Chajduk-Maleszewska, E., Dybczyński, R. Effective separation and preconcentration of trace amounts of Pd on Duolite ES 346 resin and its use for the determination of Pd by NAA, Analytical Chemistry, 2004; Vol. 49, pp. 281-297.
5. Foo, K.Y., Hameed B.H.: Insights into the modeling of adsorption isotherm systems, Chemical Engineering Journal, 2010; 156(1), 2-10;
6. Zainol, Z., Nicol, M. Comparative study of chelating ion exchange resins for therecovery of nickel and cobalt from laterite leach tailings,Hydrometallurgy, 2009a; Vol. 96, pp.283-287.
7. Jachuła, J., Kołodyńska, D., Hubicki, Z. Sorption of Cu(II) and Ni(II) ions in presence of novel chelating agent methylglycinediacetic acid by microporous ion exchangers and sorbents from aqueous solutions, Central European Journal of Chemistry, 2011; Vol. 9, pp. 52-65.
8. Leykin Yu.A. Fiziko-himicheskie osnovi sinteza polimernih sorbentov: Maskva BINOM. Laboratoriya znaniy 2015. - s 34
9. Bandrabur B., Tataru-Fărmuş R., Lazăr L., Gutt G. Exchange material for water softening – Equilibrium and thermodynamic analysis. Scientific Study & Research. Chemistry & Chemical Engineering, Biotechnology, Food Industry 2012, 13 (4), pp. 361 – 370
10. Gafurova D.A., Mukhamediyev M.G.Sintez i svoystva novih anionitov na osnove polivinilhlorida // Uzbekiskiy himicheskiy jurnal, 2019, No 1 s 10-13.
11. Bayandin V.V., MultuevP.V., Shaglayeva N.S., Sintez i svoystva osernennovopolivinilhlorida Izvestiya. // Prikladnaya himiya i biotehnologiya. (2014) No 2 (7).
12. Mao C. Zhao WB. Zhu AP. Shin J. Lin SC. A photochemical method for the surface modification of poly(vinylchloride) with o-butyrylchitosan to improve blood compability.// Process Biochem. 2004. Vol. 39. pp.1151-1157.
13. Balakrishnan B. Jayakrishnan A. Chemical modification of poly(vinylchloride) using poly(ethylene glycol) to improve blood compatibility. // Trends BiomaterAtif Organs 2005. Vol. 18. pp. 230-236.
14. Nishat N., Ahmad Sh., Ahamad T. Synthesis, characterization and antimicrobial studies of newly developed metal-chelated epoxy resins. // Appl. Polym. Sci. 2006. Vol. 101. No3. pp. 1347-1355.
15. Khushvaqtov S.Yu., Jurayev M.M., Bekchanov D.J., Mukhamediyev M.G. Sorbsiya ionov medi (II) i nikelya (II) na azoti serosoderjashem poliamfolite.//UNIVERSUM: himiya i biologiya.(2019) No 11 (65).
16. Eshkurbonov F.B., Djalilov A.T. Issledovanie sorbsionnih svoystv poluchennova ionita na osnove gidrolizovannovo poliakrilonitrila // Universum: Himiya i biologiya: electron nauchn. jurn. 2014. No 3 (4) URL: http://7universum.com/ru/nature/archive/item/1068.
17. G.-j. Zhu, et al.// A novel ion-imprinted polymer for selective removal of trace Fe (III) from Cr (III)-containing solutions // Hydrometallurgy 186 (2019) 105–114
18. Rengaraj, S., Yeon J.-W., Kim, Y., Yongju, J., Ha Y.-K., Kim W.-H: Adsorption characteristics of Cu (II) onto ion exchange resins 252H and 1500H: Kinetics, isotherms and error analysis, Journal of Hazardous Materials, 2007, 143(1–2), 469-477;
19. Mukhamediyev M.G., Bekchanov D.J.,Jurayev M.M., Кутлимуратов Н. М., Sulfokationit olish usuli // Patent. UzRes IAP 2018 0208. Bly. No 8. – s. 25. / UZ.
20. IK spektri osnovnih klassov organicheskih soedineniy: Spravochniye materiali. // Tarasevich B.N. MGU imeni M.B. Lomonosova. M. 2012. s 4-6,37-40.
21. B.N. Tarasevich. IK spekri osnovnih klassov organicheskih soedineniy //Spravochniye materiali. Moskva 2012. 40-50.
22. Adeleke A.O., Akil A., Kaizar H., Mohd R. Adsorption of Rhodamine B dye from aqueous solution onto acid treated banana peel: Response surface methodology, kinetics and isotherm studies PLoS One. 2019; 14(5).
To cite this article: S. Y. Khushvaqtov, M. M. Jo’rayev, D. J. Bekchanov, M. G. Mukhamediev. Sorption of cobalt (II) and chromium (III) ions nitrogen - and sulfur-containing complexons based on polyvinylchloride // Uzbek chemical journal. -2020. – Nr4. - Pp-36-45.
Received: 02.03.2020; Accepted: 10.06.2020; Published: 13.08.2020
* * *
INORGANIC CHEMISTRY
UDK 548.73+677.472.6
D. B. Sadikova, А. S. Rafikov, O. M. Tursunkulov
X-RAY PHASE ANALYSIS OF COLLAGEN COMPLEXES WITH TRANSITION METAL IONS
1Tashkent Institute of Textile and Light Industry, e-mail: asrafikov@mail.ru, 2Center for Advanced Technologies under the Ministry of Innovative Development of the Republic of Uzbekistan
Abstract. Background. The study of crystalline phases during the release of collagen is relevant. Protein substances in its composition containing heteroatoms form colored metal complexes, which is attractive when considering them as raw materials in the production of polymers.
Purpose: to study X-ray structural properties of coordination compounds of collagen with metal ions, potential dyes of textile fabrics and products.
Methodology: based on complexation reactions accompanied by electron transfer in solutions, powder x-ray phase analysis.
Originality. The presence of polycrystalline and amorphous regions of collagen secreted from animal skins has been established. In its complexes with transition metal ions, the number of crystalline phases decreases, the structure is ordered, and new phases appear.
Findings. X-ray spectra of collagen and its complexes with ions Fe2+, Co2+, Cr3+, Ni2+ were obtained. The nature of the spectra of collagen and its complexes corresponds to substances with polycrystalline and amorphous phases. The height, width, and intensity of the spectral lines were determined. In combination with Ni2+, the degree of crystallinity increases.
Key words: metal ions, collagen, coordination compounds, X-ray phase analysis, crystalline phase.
Highlights:
* crystalline phases of collagen and its complexes with Fe2+, Co2+, Cr3+, Ni2+;
* collagen complexes being polycrystalline and amorphous;
* narrow radiograph signal for a collagen complex with Ni2+
References
1. Xinhua Liu, Chi Zheng, Xiaomin Luo, Xuechuan Wang, Huie Jiang. Recent advances of collagen-based biomaterials: Multi-hierarchical structure, modification and biomedical applications // Materials Science and Engineering: C, 2019, Volume 99. P. 1509-1522.
2. Xu Q., Xu M., Lin C.-Y., Tian, Y., Xia Z. Metal Coordination-Mediated Functional Grading and Self-Healing in Mussel Byssus Cuticle // Advanced Science, 2019, Volume 6(23). Article 1902043.
3. Yanting Han, Yuanzhang Jiang, Jinlian Hu, Xiaoyu Chen. Achieving coalesced breathability, mechanical and shape memory properties of collagen fibrous matrix through complexing with chromium (III) // Materials & Design, 2020 January, Volume 18615. Article 108206.
4. A. E. Sorenson, P. M. Schaeffer. A new bivalent fluorescent fusion protein for differential Cu (II) and Zn (II) ion detection in aqueous solution // Analytica Chimica Acta, 2020 March, Volume 11018. P.120-128.
5. Ziye Liu, Siyun Chen, Fangfang Qiao, Xinhao Zhang. Interaction of peptide backbones and transition metal ions: 1. an IM-MS and DFT study of the binding pattern, structure and fragmentation of Pd(II)/Ni(II)-Polyalanine complexes // International Journal of Mass Spectrometry, 2019, Volume 438. P. 87-96.
6. Małgorzata Jeżowska-Bojczuk, Kamila Stokowa-Sołtys. Peptides having antimicrobial activity and their complexes with transition metal ions // European Journal of Medicinal Chemistry, 2018, Volume 1431. P. 997-1009.
7. Jasmin Shah, Jan M.R., Anjum. Selective Solid Phase Extraction of Copper from Different Samples using Copper Ion-Imprinted Polymer // Journal of Analytical Chemistry, 2018, Volume 73, Issue 12. P. 1146-1153.
8. García-Terán J.P., Beobide G., Castillo O., Cepeda J., Luque A., Pérez-Yáñez S., Román P.Supramolecular architectures of metal-oxalato coordination polymers bearing N-tethered adenine nucleobases // Polyhedron, 2019, Volume 171. P. 53-64.
9. Tabbì G., Magrì A., Rizzarelli E. The copper(II) binding centres of carbonic anhydrase are differently affected by reductants that ensure the redox intracellular environment //Journal of Inorganic Biochemistry, 2019, Volume 199. Номерстатьи 110759.
10. Sharma S., Mittal D., Verma A.K., Roy I. Copper-Gallic Acid Nanoscale Metal-Organic Framework for Combined Drug Delivery and Photodynamic Therapy // ACS Applied Bio Materials, 2019, Volume 2, Issue 5. P. 2092-2101.
11. Chai Z., Wang Y., Chen S., Chen H., Yang H., Guo X., Wu F. Photochemical properties of metalloporphyrin-silver nanoparticle stabilized by polymeric micelle // Journal of Polymer Research, 2019, Volume 26, Issue 3. Номерстатьи 67.
12. Olkhov A., Lobanov A., Staroverova O., Tyubaeva P., Zykova A., Pantyukhov P, Popov A., Iordanskii A. Fibrous materials on polyhydroxybutyrate and ferric iron (III)-based porphyrins basis: Physical-chemical and antibacterial properties // IOP Conference Series: Materials Science and Engineering, Volume 175, Issue 1, 2017. International Conference on Competitive Materials and Technology Processes, IC-CMTP 2016; Miskolc-Lillafured; Hungary; October 2016.
13. Zhao X., Song W., Chen Y., Liu S., Ren L. Collagen-based materials combined with microRNA for repairing cornea wounds and inhibiting scar formation // Biomaterials Science, 2019, Volume 7, Issue 1. P. 51-62.
14. McPherson A. Protein crystallization // Methods in Molecular Biology, 2017, Volume 1607. P. 17-50.
15. Sadikova D.B., Reyimov A.F., Muminkhodzhayev M.B., Rafikov A.S. Polucheniye i svoystva metallokompleksov kollagena s ionami Fe2+, Co2+, Cr3+, Ni2+, Mg2+. // Uzb. khim. zhurnal. 2019, No6. -S. 50-58.
16. Sadikova D.B., Soyipova D.B., Rafikov A.S. Metall ionlarining kollagen bilan metallokomplekslarini takhlili.// “Mashinasozlikning dolzarb muammolari va ularning yechimi”. Akademik KH.KH.Usmonkhŭzhayev tavalludining 100 yilligiga baġishlangan Respublika ilmiy-amaliy konferentsiyasi maqolalar tŭplami. 20-21 noyabr' Toshkent. 2019. B. 359-361.
17. Fizicheskoye materialovedeniye. Tom 3. Metody issledovaniya strukturno-fazovogo sostoyaniya materialov / N.V.Volkov, V.I.Skrytnyy, V.P.Filippov, V.N.Yal'tsev. Pod obshch. red. B.A.Kalinina. M.: MIFI, 2008, 808 s.
18. Rabek YA. Eksperimental'nyye metody v khimii polimerov: V 2-kh chastyakh. Per. s ang. –M .: Mir, 1983,114-132 s.
19. Tursunkulov O.M. Godovoy otchet proyekta PZ-2017092438 «Razrabotka tekhnologii polucheniya nanostrukturirovannykh katalizatorov na osnove perekhodnykh metallov i ikh oksidov» Tashkent, 2019, -103 s.
To cite this article: D. B. Sadikova, А. S. Rafikov, O. M. Tursunkulov. X-ray phase analysis of collagen complexes with transition metal ions // Uzbek chemical journal. -2020. – Nr4. - Pp-46-53.
Received: 06.03.2020; Accepted: 06.06.2020; Published: 13.08.2020
* * *
UDK 541.64.678
F. B. Eshkurbonov, H. H. Turaev, E. Safarova, M. B. Eshkurbonova
STUDY OF EXTRACTION OF GOLD IONS BY COMPLEX-FORMING IONITES BASED ON EPICHLORHYDRIN AND MELAMINE
Termez State University, Termez
Abstract. Background. At present, a large number of complexing sorbents for the concentration of noble metals have been synthesized. Most sorbents contain groups of nitrogen- and sulfur-containing heterocycles (imidazole, pyrazole, thiazole, pyridine, etc.), which ensures high selectivity of sorbents with respect to noble metals. Sorbents with amidoxime, guanidine are also used. thioamide, dithizone, mercapto groups, etc.
Purpose. The article studies the complexing ability of gold ions of ion exchanger based on thiourea (T), epichlorohydrin (ECG) and melamine (M). The possibility of using ion exchanger in the sorption-atomic absorption determination of gold is shown for a sample of copper concentrate.
Methodology. The structure and properties of the obtained mesh ion exchangers were studied by chemical, potentiometric, and IR spectroscopy. It was found that ion exchangers have a high exchange capacity (up to 5.6 mEq / g), increased chemical resistance in solutions of acids and alkalis, and thermal stability in water. Analysis of the gold content was carried out by atomic absorption method on a spectrophotometer PE 30-30B.
Originality. A new polyfunctional ion exchanger was synthesized based on the products of the interaction of thiourea (T), epichlorohydrin (ECG) and melamine (M) and they form complex compounds with gold ions.
Findings. It has been established that ion exchangers do not extract iron, cobalt, nickel, zinc ions from 1M hydrochloric acid solutions; copper ions are extracted by 15% at a content of 1000 μg / 20 ml. The sorption of copper ions is explained by the ion-exchange interaction of the [CuCl4]2– form and its ability to coordinate at the nitrogen atom.
Key words: complexation, gold, ion exchanger, epichlorohydrin, ability, potentiometric titration, amino groups, constants, nitrogen ions, melamine.
Highlights:
* anion exchangers with a high exchange capacity, up to 5.6 mEq/g;
* anincreased chemical resistance in solutions of acids and alkalis.
References
1. Cox M., Pichugin A.A., FJ-Shafey E.I.. Appleton Q. Sorption of precious metals onto chemically prepared carbon from flax shive // Hydrometallurgy. 2005. V. 78. No 1-2. P. 137-144.
2. Guibal E„ Von Offenberg Sweeney N., Zikan M.C.. Vincent Т., Tobin JM Competitive sorption of platinum and palladium on chitosan derivatives // International i. Biolog. Macromoleeules. 2001. V. 28. No5. P. 401 -408.
3. Chassary P., Vincent Т., Sanchez Marcano J., Macaskie L.E., Guibal E. Palladium and platinum recovery from bicomponenl mixtures using chitosan derivatives// Hydrometallurgy. 2005. V. 76. No 1-2. P. 131 - 147.
4. Godlewska-Zylkiewicz B. Biosorption of platinum and palladium for their separation / preconcentration prior to graphite furnace atomic absorption spcctromctric determination // Speetrocim. Acta. Part B. 2003. V. 58. No 8. P. 1531 - 1540.
5. V. V. Lodeyshchikov, Izv. vuzov. Tsv. metallurgiya, 5 (1999) 30.
6. Lam Yu-Lung, Yang Die, Chan Chi-Yuet, Chan Kwong-Yu, Toy Patrick H. Use of water-compatible polystyrene-polyglycidol resins for the separation and recovery of dissolved precious metal salts // Ind. and Eng. Chem. Res. 2009. No10. Т.48. – С.4975-4979.
7. Aydin Abdulhakim, Imamoglu Mustafa, Gulfen Mustafa. Separation and recovery of gold (III) from base metal ions using melamine-formaldehyde-thiourea chelating resin // J. Appl. Polym. Sci. 2008. No2. Т.107. – С.1201-1206.
8. I. A. Zhuchkov, P. P. Bubeyev, V sb, : Obogashcheniye rud, Irkutsk, 1988, s. 112-117.
9. I. A. Zhuchkov, P. P. Vubeyev, Izv. vuzov. Tsv. metal- lurgiya, 1 (1994 )82.
10. A. G. Kho1mogorov, O. N. Kononova, G. L. Pazhkov, Y.S. Kononov, Nydrometallurgy, 59 (2001) 153.
11. Eshkurbonov F.B. Polucheniye ionitov na osnove reaktsii vzaimodeystviya tiomocheviny, epikhlorgidrina i razlichnykh aminov // Uzb.khim.zhurn. – 2013. No5. – S. 27-30.
12. Turayev KH.KH., Dzhalilov A.T., Eshkurbonov F.B., Kasimov SH.A. Sorbtsiya ionov molibdena anionitom na osnove tiomocheviny, epikhlorgidrina i melamina // Uzb.khim.zhurn. – 2014. No1. – S. 24-27.
To cite this article: F. B. Eshkurbonov, H. H. Turaev, E. Safarova, M. B. Eshkurbonova. Study of extraction of gold ions by complex-forming ionites based on epichlorhydrin and melamine // Uzbek chemical journal. -2020. – Nr4. - Pp-53-58.
Received: 06.11.2020; Accepted: 25.05.2020; Published: 13.08.2020
* * *
UDK 669.2.
Sh. A. Mukhametjanova, M. M. Yakubov, H. Akhmedov, O. M. Yokubov
DEVELOPMENT OF AN EFFECTIVE TECHNOLOGY OF PRODUCTION OF CONCENTRATE FROM CONVERTER SLAGS OF COPPER PRODUCTION
Tashkent State Technical University named after I. Karimova, State Unitary Enterprise "Fan Vatarakkiet" State Enterprise "Scientific Research Institute of Mineral Resources".
Abstract. Background. To ensure growth in copper production in the world and Uzbekistan, high-performance melting furnaces of autogenous smelting have now begun to be used. Autogenous furnaces are 10-15 times more productive than classic furnaces, such as a reflective, shaft and electric furnace. The melting process goes on spontaneously, without the expense of fuel, due to the heat of exothermic reactions. However, the circulating product converter slags obtained by converting copper mattes are not processed in the Vanyukov autogenous furnace itself.
Purpose. Development of an effective technology for processing converter slag of copper production to produce copper sulfide concentrate in the pyrometallurgical production of copper.
Methodology. The experiments were carried out in a laboratory setup to determine the reducing ability of the reducing agent elements present in production wastes and in the industrial converter furnace of the Almalyk GMK JSC smelter.
Originality. The processes of interaction of the components of model mixtures of slag compositions of copper production with multiphase compositions from non-ferrous metallurgy wastes are studied, which allow creating an effective technology for the production of concentrate from converter slag.
Findings. As a result of scientific research, a technology has been developed where the through extraction of copper from converter slag to blister copper increases from 50% to 75%.
Key words: copper, slag, converter slag, depletion, magnetite, reduction, clinker, concentrate, enrichment, flotation.
Highlights:
* an efficient technology for processing converter slag has been proposed
* their origin is the matte of the Vanyukov furnace, with the production of copper sulphide concentrate.
References
1. Tsymbulov L.B., Knyazev M.V., Tsemekhman L.SH. Dvukhzonnaya pech' Vanyukova. Perspektivy primeneniya v tsvetnoy metallurgii. // Tsvetnyye metally, 2009. - No9, - S.17-20.
2. Altushkin I. A., Korol' YU. A., Golov A. N. Innovatsii v metallurgii medi na primere realizatsii proyekta rekonstruktsii ZAO «Karabashmed'». Chast' 1. Vybor osnovnogo plavil'nogo agregata. // Tsvetnyye metally, 2012. - No 8, - S.12-14.
3. Yakubov N.M. Mirovoy rynok medi: sostoyaniye i perspektivy razvitiya// Marketing v Rossii i za rubezhom. – Moskva, 2015,-No 4, S.123-129.
4. Khasanov A.S., Vakkasov B.A., Abdukadyrov A.A., Vnedreniye protsessa kislorodno-fakel'noy plavki na AO “Almalykskiy GMK”. // Tsvetnyye metally, 2009. - No 8, - S. 68-71.
5. Bol'shina Ye.P. Vysokiye tekhnologii v metallurgii. ch.1 Proizvodstvo tsvetnykh metallov» Novotroitsk: NF MISiS, 2008. – S.13-14.
6. Yakubov M.M., Saynazarov A.M., Ruziyev U.N. , Safarov Ye.T. O novatsiyakh v pererabotke konverternykh shlakov mednogo proizvodstva // Uzbekskiy khimicheskiy Zhurnal. No 5, 2018g., S. 27-34.
7. Marchenko N.V. Metallurgiya tyazhelykh tsvetnykh metallov. // [Elektronnyy resurs]: elektron. ucheb. posobiye. – Elektron.dan. (6 Mb). – Krasnoyarsk, 2009, S- 402.
8. Kupryakov YU.P. Shlaki medeplavil'nogo proizvodstva i ikh pererabotka. – M.: Metallurgiya. 1987. – S. 201.
9. Sanakulov K.S. Nauchno-tekhnicheskiye osnovy pererabotki otkhodov gorno-metallurgicheskogo proizvodstva. - Tashkent.: “Fan”.2009 g. – S. 404 .
10. Yakubov M.M., Yusupkhodzhayev A.A. Usovershenstvovaniye metodiki opredeleniya stepeni pryamogo i kosvennogo vosstanovleniya magnetita v zhidkikh produktakh plavki sul'fidnogo mednogo kontsentrata. // Vestnik TashGTU. Tashkent, 2004 g. - No 1, - S. 209-212.
11. Mukhametdzhanova SH.A., Yakubov M.M., Kholikulov D.B., Yokubov O.M., Abdukadyrova N.M. Razrabotka effektivnoy tekhnologii pererabotki konverternykh shlakov mednogo proizvodstva. Mezhdunarodnyy Uzbeksko-Belorusskaya nauchno-tekhnicheskaya konferentsiya. GUP “Fan va tarakkiyot” Tashkent. 21-22 may 2020g., - S. 29-32.
12. Khasanov A.S., Sanakulov K.S., Atakhanov A.S. Tekhnologicheskaya skhema kompleksnoy pererabotki shlakov Almalykskogo GKM. Izvestiya vysshikh uchebnykh zavedeniy. // Tsvetnaya metallurgiya. 2003. No 4 S. 9-11
To cite this article: Sh. A. Mukhametjanova, M. M. Yakubov, H. Akhmedov, O. M. Yokubov. Development of an effective technology of production of concentrate from converter slags of copper production // Uzbek chemical journal. -2020. – Nr4. - Pp-58-65.
Received: 25.06.2020; Accepted: 07.07.2020; Published: 13.08.2020
* * *
ORGANIC CHEMISTRY
UDK 541.6.69:615.01
O. R. Akhmedov, Sh. A. Shomurotov, A. S. Turaev, J. A. Khabibullaev
CONSTRUCTION OF BIOLOGICALLY ACTIVE DERIVATIVES OF CELLULOSE CONTAINING GUANIDINE GROUPS
Institute of Bioorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, e-mail: ibchem@uzsci.net
Abstract. Background. The use of various methods of chemical modification of the macromolecular chain of polysaccharides significantly expands the possibilities for targeted synthesis of new biologically active polymer derivatives.
In this case, the approach aimed at the inclusion of guanidine groups in cellulose units capable of imparting directed physiological activity to the designed macromolecule seems appropriate. Due to the variability of the cellulose macrochain and the high reactivity of guanidine, obtaining biologically active polymers with a given structure possessing the necessary physicochemical and biomedical properties can be assumed. Thus, it is important not only to choose the method of chemical binding of guanidine groups to the cellulose macromolecule. But it is also important to identify the optimal reaction conditions to establish the relationship between the physicochemical characteristics and biological activity of the obtained compounds.
Purpose. To construct macromolecular cellulose derivatives containing guanidine groups, establishing the relationship between physicochemical characteristics and biological activity.
Methodology. Byvarying the ratio of guanidine, pH, and oxidation state of cellulose, the study obtained antimicrobial polymer compounds with different composition, solubility, and content of guanidine groups in the macromolecular chain.
Originality. This study developed a method for the chemical binding of guanidine with modified cellulose. Moreover, the relationship between the biological activity and the physicochemical parameters of the synthesized derivatives was found in the study.
Findings. The antimicrobial activity of guanidine-containing cellulose derivatives with various degrees of substitution, guanidine content, molecular weight and pKα values was synthesized and studied.
Key words: biological activity, macromolecule, construction, polysaccharide, cellulose, guanidine, antimicrobial properties.
Highlight:
* based on oxidized cellulose and guanidine, biologically active macromolecular derivatives with various physicochemical parameters were synthesized;
* the dependence of the antimicrobial activity of the designed macromolecules on the physicochemical parameters was established.
References
1. Siedenbiedel F., Tiller J.C. Antimicrobial Polymers in Solution and on Surfaces: Overview and Functional Principles // Polymers. 2012. V.4. P.46-71.
2. Kanazawa A., Ikeda T., Endo T. Antibacterial Activity of Polymeric Sulfonium Salts// Journal of Polymer Science Part A: Polymer Chemistry. 1993.V.31. P.2873-2876
3. Kamaruzzaman N.F., Tan L.P., Hamdan R.H., Choong S.Sh. Antimicrobial Polymers: The Potential Replacement of Existing Antibiotics// International Journal of Molecular Sciences. 2019. V.20. P.1-31.
4. Rawlinson L.B., Ryan S.M., Mantovani G., Syrett J.A, Haddleton D.M., Brayden D.J. Antibacterial Effects of Poly(2-(dimethylamino ethyl)methacrylate) against Selected Gram-Positive and Gram-Negative Bacteria // Biomacromolecules. 2010. V.11. No2. P.443-453.
5. Klinicheskiye rekomendatsii. Opredeleniye chuvstvitel'nosti mikroorganizmov k antimikrobnym preparatam. 2014. 206 p.
6. Thiangtham S., Runt J., Manuspiya H. Sulfonation of dialdehyde cellulose extracted from sugarcane bagasse for synergistically enhanced water solubility // Carbohydrate Polymers. 2019. V.208. P.314-322 7. Akhlaghi S.P., Zaman M., MohammedN., Brinatti C., Batmaz R., Berry R., Loh W., Tam K.C. Synthesis of amine functionalized cellulose nanocrystals: optimization and characterization // Carbohydrate Research. 2015. V.409. P.48-55
8. Akhmedov O.R., Shomurotov Sh.A., Rakhmanova G.G., Turaev A.S. Synthesis and study of biological activity of sulfamic polysaccharide derivatives // Russian Journal of Bioorganic Chemistry. 2017. No7. P.718-721.
9. Jyotshna M.D.,Singh A., Chanda D., Shanker K., Khare P. Potential of di-aldehyde cellulose for sustained release of oxytetracycline: A pharmacokinetic study//International Journal of Biological Macromolecules. 2019. V.136. P.97-105.
10. Syutkin V.N., Nikolayev A.G., Sazhin S.A., Popov V.M., Zamoryanskiy A.A. Azotsoderzhashchiye proizvodnyye dial'degidtsellyulozy. 2. Sintez proizvodnykh dial'degidtsellyulozy s azotistymi geterotsiklami // Khimiya rastitel'nogo syr'ya. 2000. No1. P.5-25.
11. Sarymsakov A.A., Nadzhimutdinov SH., Tashpulatov YU.T. Khimicheskiye prevrashcheniya v tsepi dial'degidov tsellyulozy i yeye efirov // Khimiya prirodnykh soyedineniy. 1998. No2. Р.212-217.
12. Tishchenko Ye.V. Vzaimodeystviye amino- i gidroksi(okso)proizvodnykh geterotsiklov s polisakharidami - novyy put' sinteza BAV / Diss. na khim. nauk. Sankt-Peterburg. 2003. Р.111.
To cite this article: O. R. Akhmedov, Sh. A. Shomurotov, A. S. Turaev, J. A. Khabibullaev. Construction of biologically active derivatives of cellulose containing guanidine groups // Uzbek chemical journal. -2020. – Nr4. - Pp-66-75.
Received: 30.06.2020; Accepted: 09.08.2020; Published: 13.08.2020
* * *
UDK 547.791.4.
I. А. Abdugafurov, F. B. Kirgizov, N. Madikhanov, I. S. Ortiqov
SYNTHESIS OF 1,2,3-TRIAZOLE DERIVATIVES BASED ON PROPARGYL ETHERS OF SATURATED SINGLE BASIC HIGH CARBOXYLIC ACIDS AND PARA-ASIDOBENZOIC ACID
1National University of Uzbekistan Mirzo Uluғbek, 2Andijan Institute of Mechanical Engineering, 3Andijan Branch of the Tashkent Agrarian University, 432-Specialized State General Education Boarding School PED Andijan region. E-mail: ibragimaziz@yandex.ru
Abstract. Background. Today, the synthesis of low-toxic heterocyclic compounds with various pharmacophore groups, the study of their biological activity is one of the important tasks facing modern pharmacology.
Purpose. Synthesis of para-azidobenzoic acid and propargyl ethers of monobasic saturated carboxylic acids. Based on their 1,3-dipolar cycloaddition in the presence of a Cu2I2 catalyst, synthesis of 4- (4- (substituted) 1H-1,2,3-triazol-1-yl) benzoic acid derivatives. Analysis of the structure of the obtained substances by modern physical research methods.
Methodology. The propargyl esters of monobasic saturated carboxylic acids were synthesized. The reactions of their 1,3-dipolar cycloaddition with para-azidobenzoic acid in the presence of a catalyst were studied. As a result, derivatives of 4- (4- (substituted) 1H-1,2,3-triazol-1-yl) benzoic acid were obtained. The structure of the synthesized substances was confirmed using IR, 1H NMR, Mass spectral analysis.
Originality. For the first time, the corresponding derivatives of 4- (4- (substituted) 1H-1,2,3-triazol-1-yl) benzoic acid were synthesized by the reaction of cycloaddition of propargyl esters of saturated monobasic higher carboxylic acids with para-azidobenzoic acid. It has been proven that only 1,4-isomers are formed in the reaction under the action of a copper (I) iodide catalyst. The factors influencing the course of the reaction are determined.
Findings. Derivatives of 4- (4- (substituted) 1H-1,2,3-triazol-1-yl) benzoic acid were synthesized in high yields. The obtained substances were analyzed by IR, 1H NMR, and Mass spectrometry and their structures were confirmed to be consistent.
Key words: 1,3-dipolar cycloaddition reaction, para-azidobenzoic acid, propargyl enanthate, propargyl caprylate, copper (I) iodide, toluene, 1H-NMR spectroscopy, 4- (4- (enanthoxymethyl) -1H-1,2 , 3-triazol-1-yl) benzoic acid.
Highlights:
* propargyl esters of higher monobasic saturated carboxylic acids are synthesized;
* dipolar cycloaddition reactions of the obtained esters with para-azidobenzoic acid were carried out;
* it was determined that in the cycloaddition reaction under the action of the Cu 2I2 catalyst the 1,4-isomeris formed;
* the influence of temperature, time and nature of the solvent on the reaction yield is studied;
References
1. 1. Ustinov A. V., Stepanova I. A., Dubnyakova V. V., Zatsepin T. S., Nozhevnikova E. V., Korshun V. A. // Modification of nucleic acids using the reaction [3 + 2] ¬ Dipolar cycloaddition of azides and alkynes // Bioorg.chemistry.- 2010.- Volume 36, No. 4.- P.437-481 Lauria A., Delisi R., Mingoia F., Terenzi A., Martorana A., Barone G., Almerico A. M. 1,2,3‐Triazole in heterocyclic compounds, endowed with bi ological activity, through 1, 3‐dipolar cycloadditions//Eur. J. Org. Chem. 2014.– V.16. – P. 3289–3306.
2. Oliva C. G., Jagerovic N., Goya P., Alkorta, I., Elguero J., Cuberes R., Dordal A.N-Substituted-1,2,3-triazoles:synthesis,characterization and evaluation as cannabinoid ligands. ARKIVOC 2010 (2010) 127–147.
3. Cheng H., Wan J., Lin M. I., Liu Y., Lu X., Chen J., Tu Z., Cheng Y.-S. E., Ding K. // J. Med. Chem. 2012. – V55. – P. 2144-2153.
4. Popkov S.V, Kovalenko L.V. Razrabotka nauchniykh osnov tekhnologii sinteza i modifikatsii... 22. No 2434001 // PKhTU. 1980, 34
5. Christophe Pardin, Isabelle Roy, William D. Lubell, Jeffrey W. Keillor. Reversible and Competitive Cinnamoyl Triazole Inhibitors of Tissue Transglutaminase. Chemical Biology & Drug Design 2008, 72 (3), 189-196.
6. Golovanov А.А, OdinI.S, Bekin V.V, Vologzhanina A.V, Bushmarinov I.S, Zlotskii S.S, Gerasimov Yu.L, Purygin P.P. Azolyl-substituted 1,2,3-triazoles. Russian Journal of Organic Chemistry 2016, 52 (3) , 414-420.
7. Abdel-Wahab B.F, Abdel-Latif E., MohamedH.A., Awad G.E.A Design and synthesis of new 4-pyrazolin-3-yl-1, 2, 3-triazoles and 1, 2, 3-triazol-4-yl-pyrazolin-1-ylthiazoles as potential antimicrobial.European journal of medicinal chemistry 52, 263-268
8. Vikas.N, Kulbhushan.A.Simple and Efficient Method for the Preparation of Aryl azides using Sonication // Novel Synthetic Methodologies for Bioactive Molecules.Journal. Synthetic Communications. P.175-176
9. Brаse S., Gil C., Knepper K., and Zimmermann V.// Organic Azides: An Exploding Diversity of a Unique Class of Compounds // Angew. Chem. Int. Ed. 2005, 44, 5188–5240
10. HeinJ.E., Fokin,V.V. Copper-catalyzed azide-alkyne cycloaddition(CuAAC) and beyond: New reactivity of copper (I) acetylides.Chem.Soc.Rev.2010,39,1302-1315.
11. Ina Wilkening, Guiseppe del Signore and Christian P. R. Hackenberger // Phosphonamidate peptide synthesis by Staudinger reactions of silylated phosphinic acids // The Royal Society of Chemistry 2010 P. 1-26.
12. Hongyao Zeng , Qiang Tian & Huawu Shao// PEG 400 promoted nucleophilic substitution reaction of halides into organic azides under mild conditions // Green Chemistry Letters and Reviews.- 2011.-Vol. 4, No. 3, Р.281-287.
13. Khurshed Bozorova, Jiangyu Zhaoa, Haji A. Aisaa // 1,2,3-Triazole-containing hybrids as leads in medicinal chemistry: A recent overview// Bioorganic & Medicinal Chemistry 27 (2019) 3511–3531
14. Abdugafurov I.A., Makhsumov A.G., Madikhanov N. 1,3-Dipolar cycloaddition of phenylazide to 3- (2-R-phenoxy) -1-propyne and IR-, PMR-spectra of isomers 1,2, 3-triazoles // Zhurn.org.khim.-1987.-T.23, no. No. 9.-С.1986-1990
15. Patent. UzR. IAP. No. 01960. 2000. Yalliғlanishga Karshi "Fentriazolin" Surtma Dorisi. / Madikhanov N., Zhuraev A.J., Abdugafurov I.A., Makhsumov A.G., Zokirov U.B.
16. Gordon A., Ford R. Sputnik khimika. Fiziko-khimicheskiye svoystva, metodiki. -Moskva: -Mir. 1976. - 541 s.
17. Linda Dohrn // Investigation of Alternative Methods for the Synthesis of 1,2,3Triazole Analogues of CombretastatinA1andA4 // University of Oslo. June 2009. P/ 76.
To cite this article: I. А. Abdugafurov, F. B. Kirgizov, N. Madikhanov, I. S. Ortiqov. Synthesis of 1,2,3-triazole derivatives based on propargyl ethers of saturated single basic high carboxylic acids and para-asidobenzoic acid // Uzbek chemical journal. -2020. – Nr4. - Pp-76-85.
Received: 08.07.2020; Accepted: 03.08.2020; Published: 13.08.2020
* * *
UDK 667.678.074
L. I. Aliyeva, L. M. Afandiyeva, V. Kh. Musali, E. K. Gasanov, Ch. K. Salmanova
NITROGEN-DERIVATIVE SYNTHETIC NAPHTHENIC ACIDS AS AN ADDITIVE TO THE ASPHALTENE BITUMEN
Institute of Petrochemical Processes. acad. Yu.G. Mammadalieva NAS Azerbaijan, Baku e-mail: leylufer-ipcp@rambler.ru
Abstract. Background. Bitumen compositions should have a wide plastic range, high deformability, and resistance to temperature falls during the entire service life of the pavement for providing high operational durability.
Purpose. Conducting studies to improve the physicomechanical properties of petroleum road bitumen using nitrogen derivatives of naphthenic acids as modifiers with determining the optimal composition of the bitumen composition.
Methodology. Synthetic naphthenic acids were obtained by oxidation of the naphthenic-paraffin fraction 185-330°С, isolated from the diesel oil fraction, in the liquid phase with atmospheric oxygen in the presence of transition metal naphthenates at a temperature of 135-140 °С for 5 hours. By the interaction of acids with polyethylene polyamine, taken in various molar ratios of 1: 1 ÷ 6: 1, amidoamines of synthetic naphthenic acids were obtained at 140 ° C. The structural group composition of the synthesized amidoamines was determined by IR spectral analysis.
Originality. For the first time, oil road bitumen was modified with amido amines derived from synthetic naphthenic acids (SNK) and polyethylene polyamine.
Findings. With the introduction of amidoamines obtained by condensation of acids with polyethylene polyamines in an amount of 0.4 and 0.6% wt. in the composition of the bitumen composition, the adhesive properties are significantly improved. It was shown that the bitumen composition modified with amido amines of synthetic naphthenic acids in an amount of up to 0.6% has improved indicators, in particular, relatively high extensibility, penetration, and brittleness temperature, which ensures the use of this composition under various climatic conditions.
Keywords: petroleum bitumen, naphthene-paraffin concentrate, diesel fraction, liquid-phase oxidation, synthetic petroleum acids, IR spectrum, adhesion agent,extensibility, brittleness temperature, depth of needle penetration
Highlights:
* amidoamines in molar ratios of acids:amines– 1:1÷ 1:6are synthesized;.
* amidoamines are added to bitumen composition for enhancing the operational characteristics.
References:
1. Gureev A.A. Neftyanye vyazhushchie materialy. М.; Nedra, 2018, 238 p.
2. Tokilina P.M., Gureyev A.A., Andreyev A.A., Solov'yev R.Ye. Regulirovaniye reologicheskih svoystv dispersnyh sistem dlya obespecheniya sovremennyh trebovaniy k neftyanym dorozhnym bitumam // Himiya i tekhnologiya topliv i masel – 2019, No2, p.20-25.
3. Gaykanova R.N., Budnik V.A., Muratshin R.N. Sovremennoye predstavleniye o bitumnyh produktah // Neftepererabotka i Neftehimiya, 2011, No 10, p.8-13
4. Glazyrin A.B., Kinzibayev D.R., Abdullin M.I. Bitumnyye kompozitsii, modifitsirovannyye 1,2-polibutadiyenami // Vestnik Bashkirskogo universiteta, 2015, Vol.20, No4, p.1193-1197
5. Muhamatdinov I.I., Galimullin I.N. Adgezionnyye prisadki dlya bitumov dorozhnogo pokrytiya // Nefteperabotka i neftehimya, 2017, No2, p.33-37
6. Voznyy S.I., Artemenko A.A., Yevteyeva S.M. Primeneniye neftepolimernyh smol v kompozitsionnyh materialah dlya dorozhnoy razmetki // Neftepererabotka i neftehimiya, 2012, No 6, p.37
7. Pat.RU2626 859. publish.2017.08.02.
8. OhotnikovaYe.S., YusupovaT.N., GaneyevaYu.M. etal. Vliyaniye svoystv olefinovyh polimerov na kachestvo modifitsirovannyh bitumov // Neftepererabotka i Neftehimiya, 2010, No 11, p.35-38
9. Fahrutdinov R.Z., Diyarov I.N., Shamgunov R.R. et al. Uluchsheniye adgezionnyh svoystv neftyanogo bituma pri pomoshchi prisadok kationnogo tipa // Neftepererabotka i Neftehimiya, 2003, No 5, p.20-23
10. Mamed Gasan-zade D.S., Babayev A.I., Gasanov K.S. // Bitumnaya kompozitsiya s uluchshennymi fiziko-mehanicheskimi svoystvami v kachestve dorozhnogo pokrytiya // Neftepererabotka i neftehimiya, 2019, No2, p.32-35
11. Aliyeva L.I., Efendiyeva L.M., Nuriyev L.G., Aliyev B.M., Nazarov I.G. // Himiya v interesah ustoychivogo razvitiya. 2018. Vol.26. No2. p.115
To cite this article: L. I. Aliyeva, L. M. Afandiyeva, V. Kh. Musali, E. K. Gasanov, Ch. K. Salmanova. Nitrogen-derivative synthetic naphthenic acids as an additive to the asphaltene bitumen // Uzbek chemical journal. -2020. – Nr4. - Pp-85-89.
Received: 19.03.2020; Accepted: 17.07.2020; Published: 13.08.2020
* * *
UDK 665.335
D. P. Rakhimov, S. S. Achilova, G. I. Ashurmatova, A. T. Ruzibaev
COMPARATIVE HYDROGENATION OF COTTONSEED AND SUNFLOWER OILS IN ORDER TO IDENTIFY THE CHARACTERISTICS OF HYDROGENATED OIL
Tashkent Institute of Chemical Technology, Tashkent, E-mail: rahimov1984@list.ru
Abstract. Background. One of the fastest growing segments of the market for oil and fat products is hydrogenate oil margarine, which is due to a number of their advantages. In the country, the food industry is being modernized, among other things, it is fatty oil, confectionery, and the baking industry that is expanding. Margarine direction has expanded very widely and its raw materials demand for a substitute for milk fats, hydrogenate oil , transesterified fats is growing.
Purpose of the work is to study the modification of hydrogenation of cotton and sunflower oils and to compare the data obtained, for selective saturation.
Methodology. The study of the modification of oils and fats was studied by hydrogenation. The uncertainty of fatty acids in the composition of the oils of the samples was determined by the refractometric method. The oils were hydrogenated by adding a nickel catalyst, and the melting point was determined.
Originality. The fatty acid composition was compared in terms of hydrogenation of the modification, since in terms of saturation and in decreasing iodine values of cotton and sunflower oils.
Findings. By hydrogenating two types of oil, we achieved the selectivity of the catalyst, and studied the time of hydrogenation of cottonseed oil than sunflower oil, cottonseed oil has a much lower catalyst consumption since cottonseed oil hydrates faster than sunflower oil. According to the goal, they were compared by oil modification and the melting point of the obtained hydrogenate oil was determined.
Key words: hydrogenation, hydrogenate oil, catalyst, selectivity,melting point, refraction, iodine value, cottonseed oil, sunflower oil, modification, bubbling, hydrogen, transesterification, margarine.
Highlights:
* salomas with a melting point of 32 and 34 ° C at a temperature of 190 ° C were obtained;
* a decrease in the iodine number of hydrogenated sunflower oil increases the melting point of salomas.
References
1. Ruziboev A.T., Kadirov Y.K. O’simlik moylarini gidrogenlash jarayonini jadallashtirish // Kimyo va kimyo tehnologiyasi, 2015.-No.4. -PP.73-75
2. Ruzibaev A.T., Salidjanova SH.D., Batirova M.N. Poluchenie glubogidrirovannogo jira dlya proizvodstva margarina // Sbornik statey XXX mejdunarodnoy nauchno-prakticheskoy koferentsii “Sovremennyie tehnologii” Penza. 2019.
3. Rahimov D. P., Salijanova SH. D., Ruzibaev A. T., Achilova S. S., Sanaev E. SH. Opredelenie optimal'nogo temperaturnogo rezhima pri ohlazhdeniii kristallizacii v proizvodstve margarina dlya sloenogotesta // Universum: himiya i biologiya, 2019.-vol.66.-No.12. -PP. 95-100.
4. Ruzibayev A.T., Kadirov Y. K., Rahimov D. P.Intensification of the hydrogenation process of vegetable oils with effective methods of detoxication of catalyst // European Applied Sciences, 2015.-No5.-P. 58-61
5. Ruzibaev A.T., Kadirov Y.K., Yunusov O.K. Intensifikatsiya protsessa gidrogenizatsii hlopkovogo masla. Maslojirovaya promyishlennost. 2011.-No6.-S.34-35
6. Gidrogenizatsiya jirov/ I.M.Tovbin, N.L.Melamud, A.G. Sergeev.-M.: Legkaya i pischevaya prom-st, 1981.-296 s.
7. FRANK D. GUNSTONE, VEGETABLE OILS IN FOOD TECHNOLOGY (Composition, Properties and Uses). USApublished 2002, P.337
8. Rukovodstvo po tehnologii polucheniya i pererabotki rastitelnyih masel i jirov. Tom 3, kniga vtoraya. Proizvodstvo margarinovoy produktsii, mayoneza i pischevoy gorchitsyi. Pod obschey nauchnoy redaktsiey doktora tehn. nauk prof. A.G. Sergeeva Leningrad 1977 g. – 351s.
9. Koritala S.Selective hydrogenation of soybean oil. VIII. Effect of method of preparation upon the activity of a copper-silica catalyst. Journal of the American Oil Chemists Society (1977) 54(6) 267-268. DOI: 10.1007/BF02655169.
10. Gary R. List Jerry W. King. Hydrogenation of Fats and Oils. 2nd Edition. Academic Press and AOCS Press. Published USA 2015, eBook ISBN: 9780128043493, P.384.
11. N.S. Arutyunyan, L.I. Yanova, E.A. Arisheva, V.S. Kosachev, M.A. Kamyishyan. Laboratorniy praktikum po tehnologii pererabotki jirov. Moskva,1991g, agropromizdat, -157s.
12. V.G. Sherbakov. Osnovi upravleniya kachestvom produktsii i tehnohimicheskiy kontrol jirov i jirozameniteley. Moskva agropromizdat 1985, -213s.
13. Masla i jiri./Proizvodstvo, sostav i svoystva, primenenie/ Sankt- Peterburg izdatelstvo professiya, 2007. R. O’Brayen. Perevodsangl.2-goizd. -744s.
14. Rabinovich L.M., Gidrogenizatsiya i pereeterifikatsiya jirov, Sankt-Peterburg ID “Professiya”, 2013.-240s.
15. Jovanovic D., Radovic R., Mares L., Stankovic M., Markovic B. Nickel hydrogenation catalyst for tallow hydrogenation and for the selective hydrogenation of sunflower seed oil and soybean oil.Catalysis Today (1998) 43(1-2) 21-28.DOI: 10.1016/S0920-5861(98)00133-3.
16. Okkerse C., de Jonge A., Coenen J., Rozendaal A. Selective hydrogenation of soybean oil in the presence of copper catalysts. Journal of the American Oil Chemists' Society (1967) 44(2) 152-156.DOI: 10.1007/BF02558177.
17. Rukovodstvo po metodom issledovaniya i tehnicheskomu kontrolyu i uchetu proizvodstva v maslojirovoy promyishlennosti / Pod obsch.red. V.P.Rjehina i A.G.Sergeeva.-L. :VNIIJ,1964,T.ІІІ.-494s.
To cite this article: D. P. Rakhimov, S. S. Achilova, G. I. Ashurmatova, A. T. Ruzibaev. Comparative hydrogenation of cottonseed and sunflower oils in order to identify the characteristics of hydrogenated oil // Uzbek chemical journal. -2020. – Nr4. - Pp-90-94.
Received: 25.02.2020; Accepted: 10.07.2020; Published: 13.08.2020
* * *
ANALYTICAL CHEMISTRY
UDK 547.856.1
D. KH. Mutalova, M. E. Ziyadullayev, G. V. Zukhurova, R. Q. Karimov
DEVELOPMENT AND VALIDATION OF THE QUANTITATIVE DETERMINATION OF 3(H)-QUINAZOLIN-4-ONE IN THE PREPARATION OF QUINAZOL BY THE HPLC METHOD
Institute of Plant Chemistry named after acad. S.Yu. Yunusov AS RUz, E-mail: ziyadullayev.91@mail.ru
Abstract. Background. Organic compounds of a heterocyclic nature make up the majority of all medicinal substances used in the clinic. The synthesis of quinazolin-4-one and derivatives and their biological activity were studied. One of the important parameters of a pharmaceutical substance is its purity. Thin layer chromatography (TLC) allows you to control it semi-quantitatively. And it is possible to accurately determine the purity of a substance by the method of high performance liquid chromatography (HPLC), which is specific.
Purpose. Development of an analysis method for 3 (H) -quinazolin-4-one and validation of the method for quantitative determination of 3 (H) -quinazolin-4-one by high performance liquid chromatography.
Methodology. The substance of the standard sample 3 (H) -quinazolin-4-one was used. The structure of the product was confirmed by IR, mass, 1H NMR, spectral methods. HPLC was used to determine the purity of the substance.
Originality. For the first time, the analysis of the product by high-performance liquid chromatography, the anthelmintic drug quinazole against fascioliasis, the main active ingredient of which is 3 (H) -quinazolin-4-one.
Findings. The results of the validation of the developed technique are presented in terms of the parameters: specificity, linearity, correctness and repeatability. Linearity, correctness and repeatability of 3 (H) -quinazolin-4-one were determined by HPLC.
Key words: 3 (H) -quinazolin-4-one, biological activity, fascioliasis, HPLC, validation, chromatogram, linearity, repeatability, reproducibility.
Highlights:
* the effect of temperature, the ratio of reagents on the yield of 3 (H) -quinazolin-4-one.
* developed a method for the analysis of 3 (H) -quinazolin-4-one in the preparation.
References
1. Rashad Al-Salahi, Kamal-Eldin El-Tahir, Ibrahim Alswaidan, Nabih Lolak, Mohammed Hamidaddin, Mohamed Marzouk. Biological effects of a new set 1,2,4-triazolo[1,5-a] quinazolines on heart rate and blood pressure. // Chemistry Central Journal.-2014. -8:3 http://journal.chemistrycentral.com/content/8/1/3.
2. Dan Wang, Feng Gao.//Chemistry Central Journal. -2013. -7:95. –P.13-15 http://journal.chemistrycentral.com/content/7/1/95.
3. Lyudmila Antipenko, Alexander Karpenko, Sergey Kovalenko, Andrew Katsev, Elena Komarovska Porokhnyavets, Vladimir Novikov, Aleksey Chekotilo. Synthesis of new 2-thio-[1,2,4]triazolo[1,5-c]-quinazoline derivatives and its antimicrobial activity.// Chem. Pharm. Bull. -57 No (6) –P.580-585. -2009.
4. Emre Menteşe, Gülay Akyüz, Mustafa Emirik, Nimet Baltaş. Synthesis, in vitro urease inhibition and molecular docking studies of some novel quinazolin-4(3H)-one derivatives containing triazole, thiadiazole and thiosemicarbazide functionalities. // Bioorganic Chemistry. -2019. -83. –Р. 289–296. Doi.org/10.1016/j.bioorg.2018.10.031.
5. A.O. Oripov, I. Ulashev, B.ZH. El'muradov, A. Nasrullayev. Fastsiolotsidnaya aktivnost' 3,4-digidrokhinazolin-4-ona. // Materialy mezhdunarodnoy nauchnoy konferentsii «Rasprostraneniye i mery bor'by s osobo opasnymi boleznyami zhivotnykh i ptits». Samarkand. 2016. S. 204-205.
6. M.Ye. Ziyadullayev, R.K. Karimov, R.P.Zakirova, A.SH. Abdurazakov. Sintez 3H-khinazolin-4-ona i yego biologicheskaya aktivnost'. // Yevraziyskiy soyuz uchenykh (YESU). 2019. No 11 (68). - S. 51-55.
7. M.Ye. Ziyadullayev, R.K. Karimov, S.S.Saidov, G.V. Zukhurova, A.SH. Abdurazakov. Optimizatsiya protsessa polucheniya veshchestva 3,4-digidrokhinazolin-4-on. // Farmatsevticheskiy zhurnal. Tashkent. 2018. No4. - S. 64-67.
8. V.V. Pisarev. Validatsiya analiticheskikh metodov: prakticheskoye primeneniye. // Farmatsevticheskaya industriya. Moskva 2008. No1. -P. 18-20.
9. A.P. Arzamastsev, N.P. Sadchikov, YU. YA. Kharitonov. Validatsiya analiticheskikh metodov. // Apteka. Moskva 2006. No4. - S. 8-13.
10. N.A. Epshteyn. Otsenka prigodnosti metodov VEZHKH v farmatsevticheskom analize. // Khimiko-farmatsevticheskiy zhurnal. Moskva 2004. No4. -P. 40-55.
11. N.V. Yurgel', A.L. Mladentseva, A.V. Burdeyna, M.A.Getman, A.A. Malina. Metodicheskiye ukazaniya po validatsii metodov analiza lekarstvennykh sredstv // Moskva-2007. (na russkom). S. 57.
12. B.O. Royk, E. Ageyeva. Razrabotka metoda VEZHKH dlya identifikatsii zameshchennykh 1,2,4 - triazinov // Journal of Young Scientist. 2015. No 9. S. 84-91. URL https://moluch.ru/archive/89/17869/.
To cite this article: D. KH. Mutalova, M. E. Ziyadullayev, G. V. Zukhurova, R. Q. Karimov. Development and validation of the quantitative determination of 3(H)-quinazolin-4-one in the preparation of quinazol by the hplc method // Uzbek chemical journal. -2020. – Nr4. - Pp-95-101.
Received: 08.06.2020; Accepted: 07.08.2020; Published: 13.08.2020
* * *