Uzbek Chemical Journal

VOLUME №3

PHUSICAL CHEMISTRY

UDC 543.872; 532.64 (088.8)

Z. B. Rakhimjonov, E. T. Safarov, S. N. Rasulova, Kh. F. Adinaev, U. N. Ruziev, V. P. Guro

EXTRACTION OF MOLYBDENUM BY MELAMINE FROM LEACHING SOLUTIONS OF CINDER OF MOLYBDENUM INDUSTRIAL PRODUCT

Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Tashkent

Abstract. Background. Slurry fields of NPO PRMiTS of JSC Almalyk MMC are a technogenic deposit of rare metals. As well as waste solutions of the hydrometallurgical shop.

Purpose: development of a comprehensive technology for processing technogenic rhenium-containing raw materials containing rare and non-ferrous metals.

Methodology. In the processing of sludge, solid and liquid, oxidative roasting at 600oC was used, ion exchange and extraction schemes were applied, elemental analysis was performed on Agilent 7500 IСP.

Originality. Based on the analysis of samples of technogenic raw materials, new schemes of complex technologies for its processing were proposed. New approaches to the selective extraction of Mo, Re, Cu from it were proposed.

Findings. Existing and promising ion exchange and extraction methods for extracting Mo, Re, Cu were tested. A process flow chart was developed.

Key words: technogenic waste, molybdenum, rhenium, ion exchange resin, extraction

Highlights:

- schemes of technological processes for rhenium extraction were proposed;

- precipitation of Mo in the form of poorly soluble compounds was studied;

- extracting Mo and Re based on ion exchange methods.

References

1. Zelikman A.N. Metallurgy of refractory rare metals. -M.: Metallurgy, 1986. -324 p.

2.   Young Il Nam, Sang Yun Seo, Young-Chul Kang, Myong Jun Kim, Gamini Senanayake, Tam Tran, Purification of molybdenum trioxide calcine by selective leaching of copper with HCl–NH4Cl.//Hydrometallurgy. -Volume 109. -Issues 1–2. -2011. -Pages 9-17, ISSN 0304-386X, https://doi.org/10.1016/j.hydromet.2011.05.001

3.   Katherine Menzel, Lorena Barros, Andreina García, René Ruby-Figueroa, Humberto Estay, Metal sulfide precipitation coupled with membrane filtration process for recovering copper from acid mine drainage// Separation and Purification Technology. -Volume 270.-2021. -118721, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2021.118721.

4.   Arif Hussain, Haiyang Yan, Noor Ul Afsar, Huangying Wang, Junying Yan, Chenxiao Jiang, Yaoming Wang, Tongwen Xu, Acid recovery from molybdenum metallurgical wastewater via selective electrodialysis and nanofiltration//Separation and Purification Technology.-Volume 295.-2022.-121318, ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2022.121318

5.   Zhenwei Wu, Jianxian Zeng, Zhengqiu Yuan, Rui Zhang, Xiaoping Huang, Fan Feng, Minjuan Chen, Kai Jin, Shengkai Yang, Yahong Li, Polyamide/UiO-66-NH2 nanocomposite membranes by polyphenol interfacial engineering for molybdenum(VI) removal//Desalination. -Volume 563. -2023. -116716, ISSN 0011-9164, https://doi.org/10.1016/j.desal.2023.116716.

6.   Khalid Z. Elwakeel, Asem A. Atia, Ahmed M. Donia, Removal of Mo(VI) as oxoanions from aqueous solutions using chemically modified magnetic chitosan resins//Hydrometallurgy.-V. 97.-Issues1–2. -2009. -Pages 21-28. -ISSN 0304-386X.-

7.   https://doi.org/10.1016/j.hydromet.2008.12.009.

8.   Ruizhuo Liu, Zhongwei Zhao, Yongli Li, Acid leaching–extraction–circulation process based on Mo(VI) coordination with H3PO4 to efficiently extract molybdenum from different com-ponents of molybdenum calcine//Separation and Purification Technology. -Volume 322. -2023. -124269.-ISSN 1383-5866, https://doi.org/10.1016/j.seppur.2023.124269

9.   Ruizhuo Liu, Jian Cao, Zhongwei Zhao, Yongli Li, Enhanced molybdenum extraction and pu-rification from acidic lixivium using organophosphorus extractants//Separation and Purification Technology.-V.337.-2024.-126387.-ISSN1383-5866, https://doi.org/10.1016/j.seppur.2024.126387

10. Carlos Basualto, José Marchese, Fernando Valenzuela, Adolfo Acosta, Extraction of molybdenum by a supported liquid membrane method.// Talanta. -Volume 59.-Issue 5. -2003.- Pages 999-1007.- ISSN 0039-9140, https://doi.org/10.1016/S0039-9140(03)00010-9.

11. N.Iatsenko Gerhardt, A.A Palant, V.A Petrova, R.K Tagirov, Solvent extraction of molyb-denum (VI), tungsten (VI) and rhenium (VII) by diisododecylamine from leach liquors.// Hy-drometallurgy.-V.60.-Issue1.-2001.-Pages 1-5.-ISSN 0304-386X. https://doi.org/10.1016/S0304-386X(00)00123-7.

12. F.R. Valenzuela, J.P. Andrade, J. Sapag, C. Tapia, C. Basualto. The solvent extraction separa-tion of molybdenum and copper from acid leach residual solution of Chilean molybdenite concentrate//Minerals Engineering. -Volume 8. -Issue 8. -1995, Pages 893-904, ISSN 0892-6875, https://doi.org/10.1016/0892-6875(95)00051-Q.

13. Ivam Macedo Valverde, Jéssica Frontino Paulino, Julio Carlos Afonso, Hydrometallurgical route to recover molybdenum, nickel, cobalt and aluminum from spent hydrotreating catalysts in sulphuric acid medium//Journal of Hazardous Materials.-Volume 160. -Issues 2–3.-2008. -Pages 310-317. ISSN 0304-3894, https://doi.org/10.1016/j.jhazmat.2008.03.003

14. P.K. Parhi, Kyung-Ho Park, Hong-In Kim, Jin-Tae Park, Recovery of molybdenum from the sea nodule leach liquor by solvent extraction using Alamine 304-I.// Hydrometallurgy.-V. 105.- Issues 3–4.-2011.-Pages 195-200.- ISSN 0304-386X.-https://doi.org/10.1016/j.hydromet.2010.09.004.

15. Hossein Shalchian, Francesco Ferella, Ionela Birloaga, Ida De Michelis, Francesco Vegliò, Re-covery of molybdenum from leach solution using polyelectrolyte extrac-tion//Hydrometallurgy.- Volume190.-2019.-105167.https://doi.org/10.1016/j.hydromet.2019.105167. (https://www.sciencedirect.com/science/article/pii/S0304386X1930564X)

To cite this article: Z. B. Rakhimjonov, E. T. Safarov, S. N. Rasulova, Kh. F. Adinaev, U. N. Ruziev, V. P. Guro

Extraction of molybdenum by melamine from leaching solutions of cinder of molybdenum industrial product

// Uzbek chemical journal. -2024. – Nr3. - Pp.3-9. 

 

Received: 01.07.2024; Accepted: 05.07.2024; Published: 12.07.2024.

 

*** 

UDC 543.872; 532.64 (088.8)

Kh. Yu. Rakhimov, S. N. Rasulova, U. N. Ruziev, M. А. Ibragimova, Kh. F. Adinaev, Z. A. Nabieva, V. P. Guro

COMPARATIVE FUNCTIONAL CHARACTERISTICS OF DEVELOPED NEW FLOTOREAGENS

Institute of General and Inorganic Chemistry of the Academy of Sciences of the Republic of Uzbekistan, Tashkent

Abstract. Background. During flotation enrichment of Cu-Mo ores at a mining and metallurgy enterprise, flotation reagents are used, including imported frother T-92. Meanwhile, in the republic there is an opportunity for its import substitution, based on local raw materials.

Purpose: development of new reagents for depression of flotation-active gangue, without re-ducing the extraction of molybdenum into an industrial molybdenum product.

Methodology. The flotation machine FML-3 manufactured by NPR "Mekhanobr Technika" (RF), flotation reagent T-92 were used. To compare the surface activity of surfactants and the effi-ciency of rare metal sulfide extraction from flotation pulp, elemental analysis was performed via Ag-ilent 7500 ICP.

Originality.  Two highly efficient foaming agents have been created from local technogenic raw materials, exhibiting operational properties at a level no worse than the standard flotation reagent T-92.

Findings. Foaming capacity, foam stability, depression of flotation-active gangue, without re-ducing Mo extraction into molybdenum middlings, of new import-substituting foaming agents have been determined.

Key words: flotation, enrichment, molybdenite, metal sulfides, potassium xanthate, foam, flo-tation machine.

Highlights:

-           foaming capacity, foam stability of new foaming agents;

-           extraction of Mo into molybdenum middlings during flotation of Cu-Mo ores.

References

1. Dudenkov S.V., Shafaev E.Sh. Flotation reagents. – M.: "Nedra", 1968. – 159 p.

2. Melik-Gaikazyan V.I., Voronchikhina V.V., Yemelyanova N.P., Draganov A.V., Ermakov K.G. The main characteristic of the flotation activity of apolar reagents. //Non-ferrous metallurgy. -2004. -No.4.-pp.68-71

3. Dr. Christine Bilke-Krause, Dipl.-Phys. Torben Schorck, Dr. Tobias Winkler. Foaming and foam stability of aqueous surfactant solutions.// http://protonkzn.ru/upload/tirit/23.pdf

4. Method for determining the foaming ability and foam stability of solutions of surfactants (GOST 23409.26-78).

5. Bukhorov Sh.B. Synthesis, research and application of import-substituting foamers for flotation enrichment of copper-molybdenum ores: Diss.... PhD in Economics - Tashkent, 2011. – 142 p.

6. Shubov L.Ya., Ivankov S.I. and others. Flotation reagents in the processes of mineral enrichment. -M.: Nedra, 1990. Book 1. – 400 p. Book 2.– 263 p.

7. Tropman E.P., Chirkov B.D., Samokhvalov A.A. A new foaming agent for flotation of ores of non–ferrous and precious metals. //Complex use of mineral raw materials. -1998.- No.4.- pp.34-37.

8. Bekturganov N.S., Tusupbaev N.K., Semushkina L.V., Kalieva R.S. Flotation reagents in the processes of mineral raw material enrichment //Non-ferrous metals.- 2010.- No. 4.- pp. 48-51.

9. Patent RU 2067029. The method of flotation of sulfide copper-nickel ores. / Timoshenko L.I., Samoilov V.G., Markosyan S.Ya., Dolgov N.F. Institute of Chemistry and Chemical and Metallurgical Processes SB RAS. publ. No.5. 2002

10. Patent RU 2024321. The method of flotation of polymetallic ores. Gak T.L., Kurilnov B.R., Varlimov V.G., etc. Institute of Metallurgy and Enrichment of the Academy of Sciences of the Republic of Kazakhstan. No.7. 2002

11. Patent RU 2185891. The method of flotation of sulfide copper-nickel ores. Timoshenko L.I., Samoilov V.G., Semenova L.A. et al., byull. publ. No.11. 2005.

12. Polkovnichenko I.T., Lazirev V.A., Rusanov N.V. Triethanolamine esters and their surface activity//Colloidal. zh. -1986. -Vol.XLVIII.3.- pp. 574-576.

13. Selivanova N.V. Effective reagents based on waste and by-products. – Vladimir.: VSU, 2008. – 84 p.

14. Aminov S.N. Synthesis and colloidal chemical properties of surfactants of carboxylic, alkylphosphonic and alkylaryl sulfonic acids.: Abstract. diss... Doctor of Chemical Sciences – M.: D.I. Mendeleev Russian Technical Technical University 2002. – 25 p.

15. Makhkamov R.R. Preparation and colloidal chemical properties of surfactants of alkylenyantaric, maleic and benzoic acids: Abstract of the Doctor of Chemical Sciences. – Toshkent, IONKH ANRUz, 2002. – 32 p.

16. Khaidarov A.A. Technology of flotation enrichment of gold-bearing and copper ores using new foamers based on local raw materials: The author.... candidate of Technical Sciences – Tashkent, 2005. – 22 p.

17. Uzdebaeva L.K., Trebukhova J.H. Research of foaming agents for flotation of sulfide ores based on the resources of the Republic of Uzbekistan.// Report on research and development of Uzniprotsvetmet. – Almalyk. -1994. – 98 p.

18. Khersonsky M.I. Development of the reagent regime of collective flotation of copper-molybdenum ores of the deposit.//Collection of abstracts "IX Congress of enrichers of the CIS countries". -2013. –Vol. No. 1.-pp. 624-630.

19. Bocharov V.A. New scientific approaches to the selection of compositions of sulfhydryl collectors, the mechanism of their action and the justification of conditions for selective flotation of sulfide minerals. //Mining information and analytical bulletin. -2013. -No.10. -pp. 59-66

20. Klein M.S., Vakhonina T.E. Conditions for the effective use of spent mineral oils as part of collectors for the flotation of coal sludge.//Bulletin of the Kuzbass State Technical University.  -2015. -№ 5 (111). - Pp. 163-167.

21. Kubak D.A., Petukhov V.N., Semenov D.G. Investigation of the influence of the group chemical composition of complex reagents on the efficiency of coal flotation. //Bulletin of Magnitogorsk State Technical University named after G.I. Nosov. -2013. -No.4. -p.5.

22. Tusupbaev N.K. Physico-chemical foundations of the creation and application of new reagents for the intensification of flotation processes for the enrichment of sulfide polymetallic ores: Diss....Doctor of Technical Sciences. -Republic of Kazakhstan, Almaty, 2010.

To cite this article: Kh. Yu. Rakhimov, S. N. Rasulova, U. N. Ruziev, M. А. Ibragimova, Kh. F. Adinaev, Z. A. Nabieva, V. P. Guro Сomparative functional characteristics of developed new flotoreagens // Uzbek chemical journal. -2024. – Nr3. - Pp. 9-14. 

Received: 04.07.2024; Accepted: 09.07.2024; Published: 12.07.2024.

 

*** 

INORGANIC CHEMISTRY

UDC 541.123.7

S. A.Tuychiev, A. S. Togasharov, B. S. Zakirov

STUDY OF THE RHEOLOGICAL PROPERTIES OF THE [60% NaClO3·CO(NH2)2 + 40% H2O] – C2H5NO SOLUTION SYSTEM

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent, Uzbekistan. Е-mail: tuychiyev.sanjar@mail.ru

Abstract. Background. For a new defoliant, it is necessary to know the crystallization temperature, viscosity, density, pH, refractive indices of the components, to construct composition-property diagrams for the system [60% NaClO3 CO(NH2)2+40% H2O]–C2H5NO.

Purpose. To study the solubility of sodium chlorate monocarbamide, acetamide salt and to justify the process of obtaining a defoliant based on them.

Methodology. Polythermal solubility was studied in the ranges of -30°C +60, -100 °C +20 °C: a pycnometer, VPZh viscometer, FE 20 METTLER TOLEDO pH meter, and PAL-BX/RI ATAGO refractometer were used.

Originality. The solubility of the sodium chlorate monocarbamide – acetamide – water system was studied, and a “composition-property” diagram was constructed.

Findings. The physicochemical parameters of the existence of the system [60% NaClO3 CO(NH2)2 + 40% H2O] – C2H5NO were identified.

Key words: monocarbamide, sodium chlorate, acetamide, crystallization, viscosity, density, pH, refractive index.

Highlights:

- the crystallization fields of the components in the system were delineated;

- the physicochemical properties of the new defoliant were studied.

References

1.      Togasharov A.S., Shukurov Zh.S., Tukhtaev S. et al.// New defoliants based on chlorates and man-made waste from cotton gin plants.-T.: Navruz, 2019. -64 p.

2.      Shukurov Zh.S., Togasharov A.S., Askarova M.K. and others // Complex-acting defoliants with physiologically active and insecticidal properties. -T.: Navruz, 2019. -76-83 p.

3.      Li S., Liu R., Wang, X. et al. Involvement of Hydrogen Peroxide in Cotton Leaf Abscission Induced by Thidiazuron.//J.Plant Growth Regul. -2020. -1762-1768.-p. https:// doi.org/10.1007/ s00344-020-10218-w

4.      Pedersen MK, Burton JD, Coble HD (2006) Effect of cyclanilide, ethephon, auxin transport inhibitors, and temperature on whole plant defoliation. //Crop. Sci. -46(4):1666–1672p. https://doi.org/10.2135/cropsci2005.07-0189

5.      Wang Xiaojing, Li Sijia, Liu Ruixian, Zhang Guowei, Yang Changqin, Ni Wanchao. Effect of Defoliants Application on Physiological Characters of Cotton Leaf without Defoliants[J]. //Cotton Science. -2019. -31(1): 64-71 p. doi: 10.11963/1002-7807.wxjlrx.20181228

6.      S.A. Tuychiev A.S. Togasharov, B.S. Zakirov, M.A. Mamirzayev // Studying the interaction of components in the NaClO3 - C2H5NO - H2O system // "UzMU news" magazine ACTA NUUz Mirzo Ulugbek National University Scientific Journal Natural Sciences Series. -2023. -3/1. -428-431 p.

7.      Melnikov N.N.   and others. Pesticides and plant growth regulators: Handbook.   – M.: Chem-istry, 1995. -66 p.

8.      Kh. Kucharov, S.R. Mirsalimov, I. Mamirov, S.T. Tukhtaev New complex defoliants of cot-ton. //Materials rep. conference “Modern problems of chemical technology”.-Fergana.-1998.-124-127 p.

9.      D. M. Makarova, *, G. I. Egorova, A. M. Kolkera. Volumetric properties of aqueous solutions of acetamide in the temperature range 274.15–333.15 k // Journal of Physical Chemistry.- 2020. -Volume 94. -no. 4. -516–520 p.

10.    “Front matter.” Organic Chemistry Nomenclature: IUPAC Recommendations and Preferred Names 2013 (Blue Book). Cambridge.//Royal Society of Chemistry. -2014.-41p. Doi:10.1039/9781849733069-FP001. ISBN 978-0-85404-182-4.

11.    Sidikova A.A., Toghasharova A.S., Shukurova J.S. Solubility and Rheological Properties of the System NaClO3⋅CO(NH2)2–H2SO4⋅N(C2H4OH)3–H2O.// Russ. J. Inorg. Chem. –2021. –Vol. 66. –№.10. -1554 p.

12.    Shukurov J. S., Askarova M.K.,Tukhtaev S. The solubility of components in the system NaClO3·CO(NH2)2-C2H5OH-H2O // Austrian Journal of Technical and Natural Sciences Austria, -Vienna. -2017. -May-June. -№7-8. -69-72 p.

13.    GOST 684-78. ACETAMIDE. Technical conditions. - M.: Standards Publishing House, 2002

14.    Trunin A.S. Petrova D.G. Visual-polythermic method.-Kuibyshev: Kuibyshev Polytechnic. Ins., 1977. -94 p. / Dep. in VINITI No. 584-78

15.    Zdanovsky A.B. Gallurgy. - L.: Chemistry, 1972.

To cite this article: S. A.Tuychiev, A. S. Togasharov, B. S. Zakirov Study of the rheological properties of the [60% NaClO3·CO(NH2)2 + 40% H2O] – C2H5NO solution system // Uzbek chemical journal. -2024. – Nr3. - Pp. 15-20. 

Received: 23.05.2024; Accepted: 20.06.2024; Published: 12.07.2024.

 

*** 

UDC 661.634.225

E. Хoshimov, Sh. I. Turdialieva, Sh. S. Namazov, B. N. Karshiev, А. R. Seytnazarov, R. Rajabov

PRODUCTION OF FEED CALCIUM PHOSPHATES BASED ON KYZYLKUM CONCENTRATED WET PROCESS PHOSPHORIC ACID AND LIMESTONE RAW MATERIAL

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent

Abstract. Background. The efficiency of feed calcium phosphates is determined by the presence of phosphorus and calcium, and the quality is determined by the proportion of digestible forms, the concentration of impurities: F, Pb, As, Cd, Hg

Purpose. To study the ways of obtaining feed phosphates from desulfated EPA based on the corresponding concentrate and lime.

Methodology. The importance of feed phosphates in animal husbandry and the state of their production are given. The processes of obtaining dicalcium phosphate in the recycle mode and trical-cium phosphate in the non-recycle mode were studied using extraction phosphoric acid.

Originality. The obtained di- and tricalcium phosphates fully comply with the requirements of GOST 23999-80.

Findings. The optimal acid rate was determined when using H3PO4 with a concentration of 50.55% P2O5 to obtain dicalcium phosphate

Key words: extraction phosphoric acid, retur, limestone, decomposition, calcium phosphates, composition.

Highlights:

- feed DKF and TCP based on the decomposition of lime raw materials;

- concentration of phosphoric acid in the production of DKF and TCP

References

1. Analysis of the size and market share of feed phosphates – growth trends and forecasts (2024-2029) Source: https://www.mordorintelligence.com/ru/industry-reports/feed-phosphate-ma...

2. Degtyarev V. The effectiveness of monocalcium phosphate in animal feeding. // Dairy and beef cattle breeding. -2003. - No. 2. - pp. 7-10.

3. Resolution of the President of the Republic of Uzbekistan PP-4265 dated 04/03/2019  [electronic resource]. URL: https://lex.uz/uz/docs/4271634

4. Uzbekiston Republikasi Presidentining 2018 yil 6 novemberdagi PK-4005 sonli “Balikchilik soasini yanada rivozhlantirishga doir kyshimcha chora-tadbirlar tygrisida” Karori [Electron manba]. https://lex.uz/docs/4046069

5. Patent No.2467988 EN. MPC Cl. C05 B 3-00, C01B 25/32. A method for producing dicalcium phosphate. / Volodin P.N., Sidorenkova N.G. Application 05.04.2011. - Publ. 27.11.2012. - Byull. No. 33.

6. Konstantinovskaya M.A. Investigation of the physico-chemical composition of waste from bone meal production in order to assess the prospects for its complex processing. //Advances in chemistry and chemical technology. -2012. -T. 26. -№10 (139). - Pp.87-91.

7. Patent No.2411222 RU. IPC. Cl. C05 B3/00, C01B25/32.  A method for producing dicalcium phosphate. / Sharipov T.V., Mustafin A.G. Application. 03/18/2009. - Publ. 02/10/2011.

8. Patent No.2730456 EN. MPC Cl. C01B 25/32, C01F 11/00. A method for producing amorphous tricalcium phosphate. / Belyaeva O.D., Berkovich O.A., Korelskaya N.A., Zaslavsky D.V., et al. Application. 11/20/2019. - Publ. 08/24/2020. - Byull. No. 24.

9. Vinnik M.M., L. N. Yerbanova, P. M. Zaitsev, etc. Methods of analysis of phosphate raw materials, phosphorus and complex fertilizers, feed phosphates. – Moscow.: Chemistry, 1975. – 218 p.

10. Schwarzenbach G., Flaschka G. Complexometric titration. – Moscow: Khimiya, 1970.-360 p.

11. Kirgintsev A.N., Trushnikova L.N., Lavrentieva V.G. / Solubility of inorganic substances in water. Handbook.-L.: "Chemistry", 1972. - 248 p.

12. GOST 23999-80. Feed calcium phosphate. - M.: OKP 21 8230 Interstate standard, 1981.

To cite this article: E. Хoshimov, Sh. I. Turdialieva, Sh. S. Namazov, B. N. Karshiev, А. R. Seytnazarov, R. Rajabov Production of feed calcium phosphates based on kyzylkum concentrated wet process phosphoric acid and limestone raw material // Uzbek chemical journal. -2024. – Nr3. - Pp. 21-27. 

Received: 19.06.2024; Accepted: 24.06.2024; Published: 12.07.2024.

 

***

UDC 666.972.125

Kh. L. Usmanov, Z. R. Kadyrova, F. G. Khomidov, Sh. M. Niyazova

PHYSICAL AND CHEMICAL ASPECTS OF OBTAINING AGLOPORITE BASED ON WASTES OF VARIOUS PRODUCTIONS

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent, Е-mail: xikmatula.usmanov.49@mail.ru

Abstract. Background. The development of resource-saving technologies for obtaining po-rous silicate filler from industrial waste is relevant.

Purpose. Development of new compositions of porous lightweight material agloporite, study of physicochemical and technological properties.

Methodology. Methods of physicochemical research adopted in the technology of production of building materials were used.

Originality. Optimum compositions of porous lightweight material agloporite based on indus-trial waste were identified and physicochemical and technological properties were studied.

Findings. Physicochemical properties of raw materials were determined, construction and tech-nical characteristics of porous lightweight material agloporite were calculated.

Key words: waste, kaolin, soda, phosphogypsum, flotation waste, ash and slag, melting, pore formation, agloporite.

Highlights:

- composition and structure of industrial waste were studied;

- melting point, swelling of lightweight material;

- physical, chemical and technological properties of agloporite.

References

1. Decree of the President of the Republic of Uzbekistan, dated 01/28/2022 No. UP-60 On the Development Strategy of New Uzbekistan for 2022-2026. URL: https://lex.uz/docs/5841077 (date of application: 06/12/2024)

2. Rogovoy M.I. Technology of artificial porous aggregates and ceramics. -M.: Publishing house: Ekolit, 2016. -320s.

3. Pukharenko Yu.V., Andrianova M.V., Pakhtinov V.M. Fillers of light concrete: method. instructions for performing laboratory work on the course "Technology of concrete aggregates" for students / Yu. V. Pukharenko, M. V. Andrianova, V. M. Pakhtinov;// St. Petersburg State University.- He's building. un-t. – SPb. -2010. – 28 p.

4. Denisov D.Yu., Abdrakhimov V.Z., Abdrakhimova E.S. Investigation of the phase composition of ceramic bricks based on low-melting clay and industrial waste at various firing temperatures // Bashkir Chemical Journal. -2009. -No.3.-pp.31-35.

5. Guryeva V. A., Doroshin A.V. On the issue of the production of expanded clay from man-made waste of the western Orenburg region // Young Scientist. -2017. -No.21. -pp.123-127.

6. Makridin N.I. Artificial porous aggregates and light concretes: a textbook / N.I. Makridin, I.N. Maksimova. - Penza: PGUAS, 2013. -324s.

7. Makhmudova N.A., Babakulova N.B., Muminova N.A. Economic and environmental aspects of the use of secondary raw materials // Universum: technical sciences : electron. scientific journal 2018. No. 12 (57). URL: https://7universum.com/ru/tech/archive/item/6733 (date of application: 06/12/2024).

8. Namazov Sh.S., Iskandarova I., Ruziev N.R., Adylov D. Technology of clinker production using phosphogypsum and copper slag flotation enrichment of JSC "AGMK" and properties of cements based on them //Universum: technical sciences : electron. scientific journal. -2021. -10(91). URL: https://universum.com/ru/tech/archive/item/12442 (date of reference: 06/12/2024).

9. Atabaev F.B., Fuzailova F.N., Tursunova G.R., Akhmedova D.U. Effective slag-carbonate Portland cement // Journal of new century innovations. -2022. -Vol. 14. -Iss.- 4. -P. 82-86.

10. Begzhanova G.B., Iskandarova M. The production of Portland cement with a new active mineral additive "Phosphozol" has been mastered at JSC Akhangarantcement // Universum: technical sciences : electron. scientific Journal. -2017. -№ 12 (45). - URL: https://7universum.com/ru/tech/archive/item/5379 (date of reference: 06/12/2024).

11. Khamidov O., Atakuziev T.A., Bobokulov A.N. Analysis of compositions of multicomponent cements based on industrial waste // Journal "Internauka".  -2020. - Part of 2. -№ 20 (149). - Pp. 49-53.

12. Abramov A.K., Efimov V.I. Production of aggregates for light concrete from carbon enrichment waste // News of TulSU. Earth Sciences.-2013. -Issue 2. -pp.95-102

13. Petrov V.P., Tokareva S.A. Porous fillers from industrial waste // Building materials. -2011. -No.12. -pp.46-50.

14. Al-Homoud M.S. Performance characteristics and practical applications of common building thermal insulation materials // Building and Environment. -2005. -No. 40. -pp. 353-366.

15. Papandopoulos A.M. State of the art in thermal insulation materials and aims for future de-velopments // Energy and Buildings. -2005. -No. 37. - pp.77-86.

16. ASTM Standards Part 17, “Refractories, Glass, Ceramic Materials, Carbon and Graphite Prod-ucts,” – Philadelphia: ASTM, 2005. - P. 7-9, 51-61.

17. Suvorov S.A., Skurikhin V.V. Physico-chemical studies and properties of integrated high-temperature thermal insulation materials // New refractories. -2004. -No. 2. -pp. 44-52.

18. Berezovsky N.I., Voronova N.P., Gribkova S.M., Lesun B.V. The use of local fuels and secondary energy resources in the production of porous building materials / N.I. Berezovsky [et al.]. – Minsk: BNTU, 2014. -129 p.

19. IAP patent No. 20190335. 2019. Raw material mixture for the production of sinterite. Usmanov H.L., Nimchik A.G., Kadyrova Z.R.

20. GOST 9758-2012. Porous inorganic fillers for construction work. Test methods.

To cite this article: Kh. L. Usmanov, Z. R. Kadyrova, F. G. Khomidov, Sh. M. Niyazova Physical and chemical aspects of obtaining agloporite based on wastes of various productions // Uzbek chemical journal. -2024. – Nr3. - Pp. 27-33. 

Received: 19.06.2024; Accepted: 27.06.2024; Published: 12.07.2024.

 

*** 

UDC 621.621.25

B. B. Turganbaev, Z. R. Kadyrova, B. A. Kalbaev, Sh. M. Niyazova

CHEMICAL AND MINERALOGICAL STUDY OF SHEHZHELI BASALT  FOR THERMAL INSULATION MATERIALS

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent, Е-mail: paluaniyazovv@gmail.com

Abstracts. Background.  Development of thermal insulation materials production requires new innovative approaches to their production technologies.

Purpose. Study of chemical and mineralogical compositions of Shehzheli basalt for obtaining thermal insulation materials.

Methodology. X-ray phase analysis methods were used (Shimadzu LABX XRD-6100). Phase identification was carried out according to reference books and the ICDD PDF-2 database.

Originality. It was revealed that the main mineral of the basalt rock of the studied deposit is a feldspar mineral - albite.

Findings. We obtained data from X-ray phase analysis of samples, their chemical and miner-alogical composition is similar to traditional basalt rocks, in the composition - minerals albite, quartz, chlorite, calcite.

Key words: basalt, igneous rock, mineral, roasting, water absorption, thermal insulation.

Highlights:

- igneous rock of Karakalpakstan for building materials; - sintering of raw material composi-tions during heat treatment;

- melting temperature of basalt samples was determined.

References

1. Dzhigiris D., Makhova M. Fundamentals of the production of basalt products. -M.: Publishing house Teploenergetik, 2002. -416 p.

2. Kortusov M.P. Igneous rocks: A textbook. Tomsk: Publishing House of Toms. Unga, 1986. -204 p.

3. Kurbanov A.A., Turaev A.S. A brief overview of basalt and the obtained basalt materials.// Uzbekiston konchilik khabarnomasi. -2007. -No. 3. -pp.82-85.

4. Kurbanov A.A., Abdurakhmonov S.A. Scientific and practical bases of complex use of diverse basalts of Uzbekistan. -Monograph of Navoi and Alisher Navoi. -2019. -238 p.

5. Levitsky I.A., Levitsky I.A., Poznyak A.I. The use of basalts and tuffs in ceramic masses for tiles of internal wall cladding. Proceedings of BSTU.//Chemistry and technology of inorganic substances. -2014. -No.3. - Pp.37-43

6. Najimov J.B, Purkhanatdinov A.P, Khojabergenov B.M, Turganbaev B.B. Study of basalt ig-nestic rocks of the Berkuttovsloe deposit// Science and Education in Karakalpakstan. -2023. -No.4/2. -ISSN 2181-9203. -pp.136-140.

7. Zolotov Yu.A., Dorokhova E.H., Fadeeva V.I. Fundamentals of analytical chemistry: Textbook for universities: In 2 books: Book 2. Methods of chemical analysis. /Zolotov Yu.A., Dorokhova E.H., Fadeva V.I. et al.; Ed. Zolotova Yu.A. 2nd ed., reprint. and additional. -M.: Higher School, 2000. -494s.

8. Kutsevol M.L. X-ray method of diagnosis and qualitative phase analysis of minerals /Kutsevol M.L. // Practical guide to laboratory work on the discipline "Laboratory methods for studying minerals".- Dnepropetrovsk, 2012. -35 p.

9. Niyazova Sh.M., Kadyrova Z.R., Usmanov H.L. Physico-chemical properties of mineral fibers obtained on the basis of andesibasalts// Glass and ceramics. -2022. -Vol. 95. -No. 3. -pp. 38-45.

10. Eminov A.M., Kalbaev B.A. Basalt rocks of Karakalpakstan for the production of ceramics // journal New refractories. -No. 11. -2023. -pp.3-7.

11. Kalbaev B.A., Niyazova Sh.M., Zhanabaev U.U., Eminov A.M. Prospects for the use of mineral raw materials of Karakalpakstan in the production of ceramics //Mater. XXIV International Scientificpractical conference "Chemistry and chemical technology in the XXI century". -Tomsk. -2023. -pp.103-104.

12. Eminov A.M., Kalbaev B.A. Physico-chemical study of the composition of basalts of rocks of Karakalpakstan. //Composite materials. -2023. -No.1. -p.3-5.

To cite this article: B. B. Turganbaev, Z. R. Kadyrova, B. A. Kalbaev, Sh. M. Niyazova Сhemical and mineralogical study of shehzheli basalt  for thermal insulation materials // Uzbek chemical journal. -2024. – Nr3. - Pp. 34-38. 

Received: 19.06.2024; Accepted: 27.06.2024; Published: 12.07.2024.

 

***

UDC 666.193.2 /199

Sh. M. Niyazova, Z. R. Kadyrova, Kh. L. Usmanov, M. N. Kazakova, U. A. Kadirova

COMPARATIVE ANALYSIS OF MAGMATIC ROCKS FOR OBTAINING BASALT FIBER MELTS

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent, Е-mail: sindrella07@mail.ru

Abstract. Background. Production of basalt fiber materials for thermal insulation materials, based on igneous rocks, meets the requirements of world standards.

Purpose. Comparative analysis of chemical and mineralogical compositions and structures of igneous rocks for obtaining basalt fibers.

Methodology. The studies were carried out using modern physicochemical methods adopted in the technology of mineral (basalt) fibers and thermal insulation materials.

Originality. Chemical and mineralogical compositions and structures of various igneous rocks from different deposits were determined to establish their suitability for obtaining basalt fibers.

Findings. The content of the main rock-forming components of igneous rocks was determined, their structure and properties were studied.

Key words: igneous rock, basaltic andesite, basalt, gabbro, diabase, melting, X-ray phase anal-ysis, mineralogy.

Highlights:

- chemical and mineralogical compositions of igneous rocks;

- their technological properties were determined; - the content of the main rock-forming oxides was determined;

References

1. Decree of the President of the Republic of Uzbekistan, dated 01/28/2022 No. UP-60 On the Development Strategy of New Uzbekistan for 2022-2026. https://lex.uz .

2. Gorlov Yu.P., Merkin A.P., Ustenko A.A. Technology of thermal insulation materials studies.for universities. – M.: Stroyizdat, 1980.-399c.

3. Niyazova Sh.M., Kadyrova Z.R., Usmanov X.L., Khomidov F.G. Chemical and mineralogical studies of magmatic rocks of Uzbekistan for obtaining heat-insulating materials// Glass and Ceramics.-2019.-V.75, no..11/12. -p.491-495

4. Goncharov Yu.I. Raw materials of the silicate industry. - M.: ed. Associations of Construction Universities, 2009. -123c.

5. Geological and economic monitoring of the state and use of the mineral resource base of non-metallic raw materials of Uzbekistan. Report on the topic No. 647 for 2003-2005 - Tashkent, 2005, Rev. performer Ergeshev A.M. et al. Research Institute of Mineral Resources (IMR) of the State Committee of the Republic of Uzbekistan for Geology and Mineral Resources.

6. Ergeshev A.M., Fimushkin L. I. Geological and economic monitoring of the state and use of the mineral resource base of non-metallic raw materials of Uzbekistan. -Tashkent, 2005. -161 p.

7. Perevozchikov B.V. Methodological approaches to the selection of basite raw materials for the production of high-quality basalt fiber // Basalt technologies. - 2012.-pp.12-14.

8. Khakberdiev N.M., Khamidov R.A. Methodological approaches to the selection and preliminary assessment of the suitability of rocks of the basic composition for obtaining basalt fiber // Mater. International Scientific and Technical conf. "Integration of science and practice as a mechanism for the effective development of the geological industry of the Republic of Uzbekistan". -T.-2016.-pp.55-58.

9. Pankratiev P.V. Laboratory methods for the study of mineral raw materials. Physico-chemical research methods: a textbook / P.V. Pankratiev, G.A. Ponomareva.  Orenburg: GO OSU, 2007. -133 p.

10.             Niyazova Sh.M., Kadyrova Z.R., Usmanov X.L., Eminov A.A., Khomidov F.G. Physicochemical propertiesof andesitic basalt mineral fibers.//Glass and Ceramics.-Vol. 79. -Nos. 3 – 4. -P. 107-111.

11. Dubrovskaya T.S. Development of an accelerated method of chemical analysis of basalts// technical report of UV VNIISPV.  -Kiev. -1963. Electronic resource. URL: https://referat.bookap.info/work/790708-/Fiziko-ximicheskie-zakono-merno... .

12. Pelekh B.L., Makhova M.F., Dzhigiris D.D. Methods of research of basalt fibers and their physico-chemical properties// Basalt fiber composite materials and structures. - K.: Nauk.Dumka, 1980.-pp.81-111.

13. Kovba L.M., Trunov V.K. X-ray phase analysis. -M.: Moscow University Press, 1969. -160 p.

14. Kutsevol M.L. X-ray method of diagnostics and qualitative phase analysis of minerals. A practical guide to laboratory work on the discipline "Laboratory methods for studying minerals".- Dnepropetrovsk. -2012. -p. 35c.

15. Tolkachev S.S. Tables of interplanar distances. -L.: Chemistry, 1968. -132c.

16. ASTM – X-Ray Powder Diffusion Data File American Society for Testing and Materials. – Philadelphia:Pa, 1988.

17. Fukino D.G. Method of scanning (scanning) electron microscopy for studying the surface of materials.//Educational and methodical manual. - Nizhny Novgorod. -2020.-18 p.

18. Vlasov A.I., Yelsukov K.A., Kosolapov I.A. Electron microscopy: textbook. the manual. -M.: Publishing house of the Bauman Moscow State Technical University, 2011.-168s.

19. Drozdyuk T.A. Saponite-basalt materials for thermal insulation on raw materials of the Arkhangelsk region: abstract... candidate of Technical Sciences / FGBOU VO "BSTU named after V.G. Shukhov". - Belgorod, 2022. - 20 p.

To cite this article: Sh. M. Niyazova, Z. R. Kadyrova, Kh. L. Usmanov, M. N. Kazakova, U. A. Kadirova Сomparative analysis of magmatic rocks for obtaining basalt fiber melts // Uzbek chemical journal. -2024. – Nr3. - Pp. 38-43. 

Received: 19.06.2024; Accepted: 07.07.2024; Published: 12.07.2024.

 

*** 

UDC 631.427+631.816.2

O. V. Myachina, L. E. Mamasalieva, R. N. Kim, A. KH. Rakhmonov, B. A. Pulatov, O. S. Nar-zullaev, S. A. Burieva, G. Ia. Isaev

EFFICIENCY OF MULTIFACTOR HUMIC FERTILIZER ON COTTON "SULTAN" VARIETY

Institute of General and Inorganic chemistry of Science academy of Republic of Uzbekistan, Tashkent

Abstract. Background. Humatized fertilizers, due to their physicochemical and biological properties, are of particular interest for use on low-humus soils, including degraded soils, especially in irrigated agriculture.

Purpose.  Testing the agrochemical efficiency and agroecological safety of using new or-ganomineral (OMU) and humin-containing fertilizers based on Angren oxidized coals on cotton under the conditions of typical gray soils of Uzbekistan.

Methodology. The study of agrochemical effectiveness on cotton was carried out according to “Methods..., Tandoned., 2013; VNIISSiAVH methods

Originaliti. Humic urea and humic superphosphate have valuable nutritional, prolonged and resource-saving properties. The agrochemical effectiveness of HA and GS on cotton has been proven.

Findings. HA and GS based on oxidized Angren brown coals enhance growth, development, formation of vegetative and reproductive biomass. Humic fertilizers GK and GS increase cotton plant productivity by 10.7 and 7.6%.

Key words: oxidized coals, Angren deposit, humic fertilizers, cotton, growth, development, productivity.

Highlights:

- the use of organomineral HAs and GIs optimizes plant nutrition;

- when using HA and GS, 4.8 and 3.4 c/ha of additional yield of raw cotton were obtained without changing agricultural technology.

References

1. Bezuglova O.S., Polienko E.A., Horovtsov A.V. Humic preparations as growth stimulators of plants and microorganisms. //Zh. Agrosnabforum – 2016.- № 8 (148) - Pp. 84-86

2. Verlinden G., Paike J., Mertens F., Debersak K., Verheyen G., Baert J., Bryce G. The use of humic substances leads to a constant increase in crop yields and nutrient absorption. // J. The nutritionist of plants. – 2009. – pp. 12-14.

3. Izosimov A. A. Physico-chemical properties, biological activity and detoxifying ability of humic preparations differing in the genesis of organic raw materials: Dissertation ... cand. Biological sciences. -Moscow, 2016. -148 p.

4. Patent RU 2057105C1 (Russia) I apologize to the international community.

5. I.I. Lishtvan, N.P. Maksimova,I.N. Feklistova, G.V. Naumova, D.V. Maslak, L.E. Sa-dovskaya, T.L. Skakun, N.A. Zhmakova, N.L. Makarova, T.F. Ovchinnikova A new complex biopreparation Gulliver of bactericidal and growth-stimulating action based on strains of bacteria of the genus Pseudomonas SP. and humic substances.// Nature management. -2015. -No. 27. -pp. 167-174.

6. Ermakov, E.I., Popov, A.And Lykov. M. Humic substances are an effective means of correcting productivity. -M.:Publishing House of Moscow University, 2004. - 178 P.

7. Vinogradova O.S., A.A. Martyntseva, S.N. Kazarin (2015) The effect of humic and micro-fertilizers on the yield of spring wheat.// Agriculture. -2015. -No.1. -pp. 32-34.

8. Demin V.V., V.A. Terentyev, Yu.A. Zavgorodnaya. The probable mechanism of the intake of humic substances to living cells. // Humic substances in the biosphere. Proceedings of the II International Conference. -M.: Moscow University Press, 2004.-p. 159.

9. Khristeva L.A. The role of humic acid in plant nutrition and humic fertilizers.// Proceedings of the V.V. Dokuchaev Soil Institute. -1951. -No. 38. -pp. 108-184.

10. Orlov D.S. Humic substances in the biosphere [Electronic resource]// Articles of the Sorovsk Educational Journal in text format. Chemistry. – Lomonosov Moscow State University, 2012. http://www.pereplet.ru/obrazovanie/stsoros / 260.html .

11. Popov A.I., Sukhanov P.A. Humic preparations are an effective means of correcting the mineral nutrition of agricultural crops, their growth and development.// Agro-Pilot. Information and analytical bulletin of the Committee on Agriculture of the Government of the Leningrad region. – St. Petersburg. -2002. -56 P.

12. Ovcharenko M.M. Humates – activators of productive activity of the national community //Geographical Bulletin. -2001. -No.2. -C.56-61

13. Levinsky B.V. Humic preparations of a new generation:// Proceedings of the II International conference. -M.: Publishing House of Moscow University, 2004. -pp. 32-35

14. Lishtvan I.I., Abramets A.M. Huminovse preparations and environmental protection // Humin substances in the biosphere. -M.: Nauka, 1993. - 161 p.

15. Vlasenkova N.G., Egorycheva, M.T. Use potassium humate // Protection and quarantine of plants. -2007. -No.10. -pp.27-35.

16. Burmistrova T.I., T.P. Alekseeva, N.M.Trunova, L.V. Kasimova. Assessment of the use of sapropel-based soil in the cultivation of cucumber seedlings // Bulletin of the Altai State Agrarian University. -2016. – № 6 (140). – Pp. 15-18.

17. Burmistrova T.I., Sysoeva, L.N. The effectiveness of potato health improvement using peat humic preparations.//Humic substances in the biosphere: proceedings of the second international conference. Moscow University Press. - 2004. -pp.92-95.

18. N.A. Luchnik, O.V. Sudmantas, T.N. Samodurova, Yu.V. Smirnova. The test of humate "Fertility" on vegetable crops.// Agrochemical bulletin. -2008. -No.3. –pp. 52-62.

19. Luchnik N.A. The effectiveness of the use of humate "Fertility" in the cultivation of agricultural crops // Materials of the All-Russian seminar-meeting "Efficiency and technologies of the use of humate "Fertility" in agricultural production". - Kostroma. -2014

20. Arziev Zh.A., Zhorobekova Sh.Zh. Humic fertilizers and growth stimulants from oxidized coals of the Kyrgyz Republic.Bishkek: "Ilim", 2008. – 184 p.

21. Ganiev Pirnazar, Namazov Shafoat, Usanboev Najimuddin, Temirov Uktam, Turdialieva Shahzoda, Production of humated carbamides based on carbamide and sodium humate, fusion of potassium and ammonium //National Volatile substances and essences. Oils. -2021; 8(5): -pp. 8084-8093.

To cite this article: O. V. Myachina, L. E. Mamasalieva, R. N. Kim, A. KH. Rakhmonov, B. A. Pulatov, O. S. Nar-zullaev, S. A. Burieva, G. Ia. Isaev Efficiency of multifactor humic fertilizer on cotton "sultan" variety // Uzbek chemical journal. -2024. – Nr3. - Pp. 43-52. 

Received: 10.07.2024; Accepted: 11.07.2024; Published: 12.07.2024.

 

***

UDC 615.322:543.64

1T. Durdyev, 2D. Gadamov, 3A.  Akmuradov

DETERMINATION OF QUALITATIVE INDICATORS OF MILK THISTLE SEEDS IN TUREMENISTAN

1Marat Garayev State Medical University of Turkmenistan, Ashgabat, Turkmenistan, (t.durdyyew17@gmail.com ), 2Technology Center of the Academy of Sciences of Turkmenistan, Ashgabat, Turkmenistan, 3Institute of General and Applied Biology of the Oguzkhan University of Engineering and Technology, Ashgabat, Turkmenistan

Abstract. Background. Due to the increasing demand for hepatoprotectors based on silymarin, it is very important in Turkmenistan to work out the quality indicators of the raw materials used to ob-tain extracts from local medicinal plants.

Purpose. Determination of quality indicators of milk thistle seeds through pharmacognostic studies.

Methodology. The phytochemical composition and quality indicators of milk thistle seeds were studied according to the methods of the State Pharmacopoeia of the Russian Federation-XIII.

Originality. Increased polymorphism in milk thistle seed coats was established, as well as a change in their color from light brown to brown and black. Microscopic examination of longitudinal and transverse sections of milk thistle achenes reveals cotyledons surrounded by a thick layer of tight-ly fused sclereids, noticeable by their natural yellow color.

Findings. The phytochemical composition and quality indicators of milk thistle seeds have proven compliance with Global Fund standards.

Key words: milk thistle, Silybum marianum, flavonignans, microscopy, spectrophotometry, chromatography.

Highlights:

- compliance of the phytochemical composition of milk thistle seeds with Global Fund stand-ards;

- identification of the medicinal properties and pharmacological qualities of milk thistle.

References

1. Berdimuhamedov G. Medicinal Plants of Turkmenistan. – Ashgabat: Turkmen State Publishing Service, 2010. – Volume I. – 385 p.

2. The State Pharmacopoeia of the Russian Federation. 13th Edition. – Moscow, 2015. – Volumes I, II, III.

3. Durdyev T.S. Pharmacognostic Features of Milk Thistle (Silybum marianum (L.) Gaertn.) Growing in Turkmenistan // 14th Russian (Final) Scientific and Practical Competition-Conference with International Participation of Students and Young Scientists "AVICENNA - 2023", Dedicated to the 100th Anniversary of the Birth of Professor V.E. Yavorovskaya. – Novosibirsk, 2023.

4. Durdyev T., Danatarov B., Akmyradov A. An Innovative Method for Obtaining Dry Extract from Milk Thistle Seeds // Innovative Technologies in Turkmenistan. Popular Science Electronic Journal. – 2023. – Vol. 3(3). – pp. 147–150.

5. Nikitin V.V., Geldikhanov A.M. Determinant of Plants of Turkmenistan. – Leningrad: Nauka, 1988. – 680 p.

6. Rosikhin D.V. Pharmacognostic Research on the Justification of the Complex Use of Milk Thistle (Silybum marianum (L.) Gaertn.): Dissertation of the Candidate of Pharmaceutical Sciences. – Samara, 2018. – 84 p.

7. Shchekatikhina A.S., Gavrilenko R.V., Kurchenko V.P. Assessment of the Content of Flavolignan Isomers of Milk Thistle in Hepatoprotective Preparations // Bulletin of the BSU, Series 2. – No. 2. – 2010. – pp. 73–78.

8. Ancuta Cristina Raclariu-Manolica et al. Detecting and Profiling of Milk Thistle Metabolites in Food Supplements: A Safety-Oriented Approach by Advanced Analytics // Metabolites. – 2023. – Vol. 13. – Article 440.

9. Bijak M. Silybin, a Major Bioactive Component of Milk Thistle (Silybum marianum L. Gaertn.) – Chemistry, Bioavailability, and Metabolism // Molecules. – 2017. – Vol. 22. – Article 1942.

10. Gulden Dogan et al. Chemical Composition and Biological Activity of Milk Thistle Seeds (Silybum marianum (L.) Gaertn.) // International Journal of Nature and Life Sciences (IJNLS). – Vol. 6(2). – December 2022. – pp. 90–98.

11.  Roberto Marceddu et al. Milk Thistle (Silybum marianum L.) as a Novel Multipurpose Crop for Agriculture in Marginal Environments: A Review // Agronomy. – 2022. – Vol. 12. – Article 729.

12.  Meghreji Moin et al. Validated Method for Silymarin by Spectrophotometry in Bulk Drug and Pharmaceutical Formulations // Journal of Chemical and Pharmaceutical Research. – 2010. – Vol. 2(1). – pp. 396–400.

13.  Durdyyev T. Some Results of Studying the Pharmacognostic and Pharmacological Properties of Milk Thistle Growing in Turkmenistan // Proceedings of the International Scientific Conference "Science, Technology, and Innovation in the Revival Epoch of the New Era of the Sovereign State". – Ashgabat: Ylym, 2023.

14.  Durdyyev T.Sh., Akmyradov A. Opportunities for Obtaining Medicinal Forms from Milk Thistle Seeds and Their Mineral Composition // Achievements in Oncology Assistance to the Population of Turkmenistan (Collection of Scientific Articles). – Ashgabat: Ylym, 2023. – pp. 178–184.

To cite this article: T. Durdyev, D. Gadamov, A.  Akmuradov Determination of qualitative indicators of milk thistle seeds in Turкmenistan // Uzbek chemical journal. -2024. – Nr3. - Pp. 52-58. 

Received: 14.06.2024; Accepted: 22.06.2024; Published: 12.07.2024.

 

***

UDK 538.915

B. B. Gulyamov, N. T. Kattaev, KH. I. Аkbarov

STUDY OF THE EFFECT OF POLYANILINE ON MoS2 AS A PHOTOCATALYST

National University of Uzbekistan E-mail: gulomovbohodir23@gmail.com

 

Abstract. Background. Today, the transition to green chemistry and the photocatalytic removal of harmful waste are very relevant.

Purpose. Synthesis of hybrid/composite samples based on PANI/MoS2 and study of their pho-tocatalytic activity.

Methodology. Hydrothermal and in-situ methods, SEM EDS and ultraviolet spectroscopy anal-ysis were used in this work

Originality. photocatalytic properties of hybrid/composites based on polyaniline and MoS2 in various proportions were studied.

Findings. The band gap value Eg = 1.55 eV of the rods formed in the obtained PANI/MoS2 composite was considered active for photocatalytic processes.

Key words: PANI, MoS2, hydrothermal, in-situ, hybrid/composite, photocatalytic.

Highlights:

- the wall thickness of the composite tube is in the range of 20-40 nm,

- the diameter of PANI/MoS2 is about 500 nm.

-the band gap value is 1.55 eV.

 

 

 

Refеrences

1.   N. Shao, J. Wang, D. Wang, P. Corvini. Preparation of three-dimensional Ag3PO4/TiO2@MoS2 for enhanced visible-light photocatalytic activity and antiphotocorrosion // Applied Catalysis B: Environmental.-V. 203.-2017. -P 964-978.

2.   M Bai,  W Li, H Yang, W Dong, Q Wanga and  Chang. Morphology-controlled synthesis of MoS2 using citric acid as a complexing agent and self-assembly inducer for high electrochem-ical performance // Adv. -2022. -V. 12. -P 28463-28472

3.   C. N. R. Rao, H. S. S. R. Matte and U. Maitra. Graphene Analogues of Inorganic Layered Ma-terials // Angewandte . Reviews // V. 52. -I. 50. -2013. -P. 13162-13185.

4.   M. R. Hoffmann, Scot T. Marti, W. Choi and D. W. Bahnemann. Environmental Applications of Semiconductor Photocatalysis // Chem. Rev. -1995.-V. 95. -P 69-96.

5.   W. Feng, L. Chen, M. Qin; X. Zhou, Q. Zhang; K. Qiu, Y. Zhang, C. He. Flower-like PEGylated MoS2 nanoflakes for near-infrared photothermal cancer therapy // Sci. Rep. 5, 1. -2015.

6.   F. Pu, CH. Chia, S. Zakaria, T. Liew, M. A. Yarmo and N. Huang. Preparation of Transition Metal Sulfide Nanoparticles via Hydrothermal Route // Sains Malaysiana. -V. 39. -I 2. -2010. -P.243–248.

7.   T. Liu, Ch. Wang, X. Gu, H. Gong, L. Cheng, X. Shi, L. Feng, B. Sun and Z. Liu. Drug Deliv-ery with PEGylated MoS2 Nano-sheets for Combined Photothermal and Chemotherapy of Cancer // Adv. Mater. -2014. -V.26. -P. 3433–3440.

8.   A.Chithambararaj, N. S. Sanjini, A. Chandra Bose and S. Velmathi. Flower-like hierarchical h-MoO3: new findings of efficient visible light driven nano photocatalyst for methylene blue degradation // Cite this: Catal. Sci. Technol. -2013. -V.3. -P 1405.

9.   F. Bonaccorso, P. Tan and A. C. Ferrari. Multiwall Nanotubes, Multilayers, and Hybrid Nanostructures: New Frontiers for Technology and Raman Spectroscopy // ACS Nano. -2013. -V.7. -I 3. -P 1838–1844.

10. W. Wang, L. Liu, J. Feng and Y. Yin. Photocatalytic Reversible Color Switching Based on Ti-tania Nanoparticles // Wiley online library.-V. 2, I 2. -2018. -P. 200 – 239.

11. W Ma, N Wang, L Yang, Manfei Lv. Fabrication of high photocatalytic activity and easy re-covery photocatalysts with ZnFe2O4 supported on ultrathin MoS2 nanosheets // Journal of Ma-terials Science: Materials in Electronics. -V. 31(11). -P 232 -255

12. H Phung, V Tran, L Nguyen, L Phan, P Duong and H Le. Investigating Visible-Photocatalytic Activity of MoS2/TiO2 Heterostructure Thin Films at Various MoS2 Deposition Times // Jour-nal of Nanomaterials. -V. 2017. -V. 11. -P 1- 6

13. H Song, S You, X Jia. Synthesis of fungus-like MoS2 nanosheets with ultrafast adsorption ca-pacities toward organic dyes // Appl Phys. A. -2015. -V.121 (2). -P. 541-548.

14. A T Massey, R Gusain, S Kumari, O P Khatri. Hierarchical microspheres of MoS2 nanosheets: efficient and regenerative adsorbent for removal of water-soluble dyes // Ind. Eng. Chem. Res. -2016.- V. 55 (26). -P 7124-7131.

15. A Midya, A Ghorai, S Mukherjee, R Maiti, S K Ray. Hydrothermal growth of few layer 2H-MoS2 for heterojunction photodetector and visible light induced photocatalytic  applications // J. Mater. Chem. A. -2016. -V. 4 (12). -P 4534-4543.

16. M Cochet, W K Maser, A M Benito, M A Callejas, M Teresa, J Benoit, O  Chauvet. Synthesis of a new polyaniline/nanotube composite: “in‐situ” polymerisation and charge transfer through site‐selective interaction // Chem.Commun. -2001.-V.23. -P 1450–1451.

To cite this article: B. B. Gulyamov, N. T. Kattaev, KH. I. Аkbarov Study of the effect of polyaniline on MOS2 as a photocatalyst // Uzbek chemical journal. -2024. – Nr3. - Pp. 58-65. 

 

Received: 14.06.2024; Accepted: 25.06.2024; Published: 12.07.2024.

 

***

ORGANIC CHEMISTRY

UDC 541.49:577.164.186

1M. I. BOZAROVA, 2A. A. RASULOV, 2J. M. ASHUROV

SYNTHESIS AND HIRSCHFELD SURFACE ANALYSIS OF ORGANIC SALT CRYSTAL OF LEVOFLOXACIN FORMED WITH DITHIONATE ANION

1Termiz Branch of Tashkent Medical Academy, 2Institute of Bioorganic Chemistry named after O.S. Sodikov, E-mail: bozorovamahbuba000@gmail.com.

Abstract. Background. The creation of safe and highly effective drugs in pharmacology is relevant.

Purpose. Synthesis of molecular complexes of organic salts based on levofloxacin, determina-tion of the structure and crystallographic size.

Methodology. The crystal structures of the complex (X Calibur-R Oxford Diffraction) were registered with the corresponding programs, the Hirschfeld surface analysis of the synthesized com-plex was performed.

Originality. The surface analysis of the complex according to Hirschfeld was carried out and the energies of intermolecular interactions were calculated.

Findings. A new molecular complex of the salt [LEVH]2∙[S2O6]∙2H2O was obtained. Its mo-lecular characteristics and crystal structure were determined by X-ray structural analysis.

Key words: levofloxacin, organic salt, dithionate anion, Hirschfeld surface, intermolecular in-teraction energy.

Highlights:

- a complex compound consisting of three components;

- a molecular complex compound in the form of an organic salt;

- it belongs to hydrated complexes of ionic nature.

References

1.   Reddy J. S., Ganesh S. V., Nagalapall R., Dandela R., Solomon K. A., Kumar K. A. Fluoroquinolone salts with carboxylic acids. //Journal of Pharmaceutical Sciences. -2011. -100(8). -S.3160–3176. https://doi.org/10.1002/jps.22537

2.   Gorman E. M., Samas B.,  Munson E. J. Understanding the Dehydration of Levofloxacin Hemihydrate. //Journal of Pharmaceutical Sciences. -2012. -101(9). -S.3319–3330. doi: https://doi.org/10.1002/jps.23200.     

3.   Freitas J. T. J., de Melo C. C., Viana O. M. M. S., Ferreira F. F. & Doriguetto A. C. Crystal Structure of Levofloxacin Anhydrates: A High-Temperature Powder X-ray Diffraction Study Versus Crystal Structure Prediction. //Crystal Growth & Design. -2018.-18(6).-S.3558–3568. https://doi.org/10.1021/acs.cgd.8b00363

4.     Wei N., Jia L., Shang Z., Gong J., Wu S., Wang J. & Tang W. Polymorphism of levofloxacin: structure, properties and phase transformation. //CrystEngComm.-2019.-S.1-14.  https://doi.org/10.1039/C9CE00847K

5.   Drevenšek P., Košmrlj J., Giester G., Skauge T., Sletten E., Sepčić K. & Turel I. X-Ray crystallographic, NMR and antimicrobial activity studies of magnesium complexes of fluoroquinolones – racemic ofloxacin and its S-form, levofloxacin. //Journal of Inorganic Biochemistry.-2006.- 100(11). -S.1755–1763. https://doi.org/10.1016/j.jinorgbio.2006.06.011

6.   Zhang J.-L., Yang J., Wang X., Zhang H.-Y., Chi X.-L., Chen Y., … Xiao D.-R. Syntheses and Structures of Two Novel Interdigitated Metal-Quinolone Complexes: [Cu2(cfH)2(bptc)(H2O)]·4H2O and [Zn2(levofH)2(odpa)]·5.5H2O. //Zeitschrift Für Anorgan-ische Und Allgemeine Chemie. -2015.- 641(5).-S. 820–825. https://doi.org/10.1002/zaac.201400573

7.   Golovnev N. N., Molokeev M. S. & Lesnikov M. K. Crystal Structure and Properties of Levofloxacinium 2-Thiobarbiturate Trihydrate. //Journal of Structural Chemis try. -2018.-59(3). -S.646–651. https://doi.org/10.1134/S0022476618030204

8.   Singh. S. S.; Thakur. T. S. New crystalline salt forms of levofloxacin: conformational analysis and attempts towards the crystal structure prediction of the anhydrous form. //CrystEngComm. -2014.- 16. -S.4215–4230

9.   C. F. Macrae, I. J. Bruno, et al. Appl.Cryst. 2008.41.466-470

10. A. Gavezotti. Acc. Chem. Res. -1994.-Vol. 27. -№10. -P.309–314

11. Turner M. J., McKinnon J. J., Wolff S. K., Grimwood D. J., Spackman P. R., Jayatilaka D. & Spackman M. A. Turner Crystal Explorer17. //University of Western Australia. -2017. http://Hirshfeldsurface.net.

12. Nazokat M., Fayzulla N., Abdulahat J. FLAME RETARDANT FOR COTTON FABRICS BASED ON PHOSPHATE ACID-UREA POLYMER //Universum: химия и биология. – 2022. – №. 9-2 (99). – С. 53-56.

13. Nazokat M., Faizulla N., Abdulahat J. SYNTHESIS OF A NEW FLAME RETARDANT, HIGH CONTENT OF PHOSPHORUS AND NITROGEN AND ITS USE IN COTTON FABRICS //Universum: технические науки. – 2022. – №. 8-3 (101). – Р. 59-62.

14. Bozorova M.I., Rasulov A.A., Ashurov J.M. Ni (II) NING LEVOFLOKSATSIN BILAN YANGI KOMPLEKS BIRIKMASI SINTEZI VA UNING ANALIZ NATIJALARI TAHLILI.// Товарлар кимёси ва халқ табобати. -2023-№-6-2.-Р.47-64.

To cite this article: M. I. Bozarova, A. A. Rasulov, J. M. Ashurov Synthesis and hirschfeld surface analysis of organic salt crystal of levofloxacin formed with dithionate anion // Uzbek chemical journal. -2024. – Nr3. - Pp. 66-72. 

Received: 20.05.2024; Accepted: 20.06.2024; Published: 12.07.2024.

 

***

UDC 543.5:547.539

D. A. Mansurov, A. X. Xaitbaev, X. X. Xayitboyev, D. Gʻ. Omonov

MENTHOL: QUANTUM-CHEMICAL APPROACH TO STUDYING STRUCTURE AND PROPERTIES

1National University of Uzbekistan, Email: mansurovdilshod789@gmail.com , 2nd University Research Laboratory "Cellular and Molecular Biotechnology" at the National University of Uzbekistan, 3rd O. Sodikov Institute of Bioorganic Chemistry, Academy of Sciences of the Republic of Uzbekistan

Abstract. Background. Menthol is used in chemistry and pharmaceuticals. Understanding its structure and properties is revealed by the quantum-chemical method.

Purpose. To study the properties of menthol by the quantum-chemical method.

Methodology. Quantum-chemical calculations using the Gaussian 09 software package and the 3-21G, 6-31G and 6-311G basis sets. The DFT, Unrestricted and B3LYP methods, Avogadro 1.2.0 and GaussView 6.0.16 programs were used.

Originality. For the first time, the structural and electronic properties of menthol, previously unknown features of the molecular structure of menthol have been revealed, which opens up pro-spects for its wider use.

Findings.

- bond length, charge distribution in the menthol molecule;

- molecular orbital analysis (HOMO), (LUMO);

- electrostatic potential of menthol.

Keywords: menthol, quantum chemistry, Gaussian 09, DFT, B3LYP

Highlights:

- quantum chemical methods for studying menthol;

- understanding its structural and electronic properties.

References

1.   Balakrishnan A. Therapeutic uses of peppermint-a review //Journal of pharmaceutical sciences and research. – 2015. – Т. 7. – №. 7. – С. 474.

2.   Patel T., Ishiuji Y., Yosipovitch G. Menthol: a refreshing look at this ancient compound //Journal of the American Academy of Dermatology. – 2007. – Т. 57. – №. 5. – С. 873-878.

3.   Kamatou G. P. P. et al. Menthol: a simple monoterpene with remarkable biological properties //Phytochemistry. – 2013. – Т. 96. – С. 15-25.

4.   McKay D. L., Blumberg J. B. A review of the bioactivity and potential health benefits of pep-permint tea (Mentha piperita L.) //Phytotherapy Research: An International Journal Devoted to Pharmacological and Toxicological Evaluation of Natural Product Derivatives. – 2006. – Т. 20. – №. 8. – С. 619-633.

5.   Kazemi A. et al. Peppermint and menthol: a review on their biochemistry, pharmacological ac-tivities, clinical applications, and safety considerations //Critical Reviews in Food Science and Nutrition. – 2023. – С. 1-26.

6.   Szymczak J. et al. Regioisomers of magnesium (II) phthalocyanine bearing menthol substitu-ents-Synthesis, spectral, electrochemical and computational studies //Dyes and Pigments. – 2021. – Т. 191. – С. 109357.

7.   Devi T. G., Chanu N. B., Devi T. J. DFT study of molecular interaction between Menthol and Myristic Acid //Materials Today: Proceedings. – 2023.

8.   Ali M. A. et al. Structure elucidation of menthol-based deep eutectic solvent using experi-mental and computational techniques //The Journal of Physical Chemistry A. – 2021. – Т. 125. – №. 12. – С. 2402-2412.

9.   Han Z. Y. et al. New (-)-menthol-based blue phase liquid crystals with different polar substitu-ents in the terminal group: Synthesis, mesophase behaviors, and DFT calculations //Journal of Molecular Structure. – 2022. – Т. 1263. – С. 133147.

10. Javanshir Z., Razavi Mehr M., Fekri M. H. Experimental and computational studies on the electrochemical behavior of Carvacrol and menthol //Iranian Journal of Chemistry and Chem-ical Engineering. – 2021. – Т. 40. – №. 2. – С. 487-499.

11. Rydel-Ciszek K. DFT Studies of the Activity and Reactivity of Limonene in Comparison with Selected Monoterpenes //Molecules. – 2024. – Т. 29. – №. 7. – С. 1579.

12. Setzer W. N. A DFT analysis of thermal decomposition reactions important to natural products //Natural Product Communications. – 2010. – Т. 5. – №. 7. – С. 1934578X1000500701.

13. Currin A. et al. Engineering the “missing link” in biosynthetic (−)-menthol production: bacteri-al isopulegone isomerase //ACS catalysis. – 2018. – Т. 8. – №. 3. – С. 2012-2020.

14. Mündel T., Jones D. A. The effects of swilling an l (−)-menthol solution during exercise in the heat //European journal of applied physiology. – 2010. – Т. 109. – №. 1. – С. 59-65.

To cite this article: D. A. Mansurov, A. X. Xaitbaev, X. X. Xayitboyev, D. Gʻ. Omonov Menthol: quantum-chemical approach to studying structure and properties // Uzbek chemical journal. -2024. – Nr3. - Pp. 72-78. 

Received: 23.05.2024; Accepted: 07.06.2024; Published: 12.07.2024.

 

***

UDС 577.112.322

O. B. Avazova, S. Sh. Rashidova, N. A. Khuzhamshukurov

STUDYING THE INTERACTION OF SERICIN AND CHITOSAN TENEBRIO MOLITOR

Institute of Chemistry and Physics of Polymers of the Academy of Sciences of Uzbekistan, Tashkent, A.Kadiri str., 7 B, e-mail:carbon@uzsci.net

Abstract. Background. The study of the interaction of protein - sericin from the cocoons of the silkworm Bombix mori with chitosan Tenebrio molitor (T.m) and the determination of the proper-ties of complex compounds based on them is relevant in the field of polymer chemistry.

Purpose: to isolate chitosan from chitin of larvae (T.m) and sericin from cocoons of the silk-worm Bombix mori, to study their structure.

Methodology. Sericin extracted from cocoon shells, chitin from Tenebrio molitor larvae, the reaction of chitin deacetylation to obtain chitosan. The structure is confirmed by IR spectroscopy.

Originality. The interaction, pH of the medium and optical density of solutions of sericin and chitosan (T.m) were studied. The factors influencing the course and direction of the reaction were re-vealed.

Findings. An effective method for obtaining chitosan from chitin (T.m) was developed. In the presence of chitosan (T.m) and sericin, a complex was obtained and its IR spectra were analyzed.

Key words: Tenebrio molitor larvae, sericin, protein hydrolysis, chitin, chitosan, complexes, structure in solution, IR spectroscopy.

Highlights:

- Tenebrio molitor chitosan was synthesized;

- physicochemical properties of its samples were studied;

- precipitation and interaction of chitosan and sericin were shown;

- the effect of pH on the yield of products and optical density was studied.

References

1.            Wei Z, Huang Q. Assembly of protein polysaccharide complexes for delivery of bioactive in-gredients: A perspective paper. Journal of agricultural and food chemistry. 2019 Feb 6;67(5):1344-1352. doi: 10.1021/acs.jafc.8b06063. Epub 2019 Jan 25.

2. Dosadina E.E., Bikineeva M.A., Evdokimenko A.Yu., Savelyeva E.E. and others. Studying the interaction of chitosan with some hydrolases. //Izvestiya vuzov. Applied chemistry and biotechnology. -Volume 7. -N 1. -2017. DOI:10.21285/2227-2925-2017-7-1-63-72.

3.            Kumar M., Janani G., Fontaine M. J. Silk – based encapsulation materials to enhance pancreat-ic cell function // Transplantation, Bioengineering, and Regeneration of the Endocrine Pancre-as. -2020. -Vol. 2. -329-337.

4.            DOI:10.1016/B978-0-12-814831-0.00024-5Get.

5.            https://doi.org/10.1177/0885328219844978

6.            Zhang Q., Zhou Y., Yue W., Qin W. Nanostructures of protein-polysaccharide complexes or conjugates for encapsulation of bioactive compounds. //Trends in Food Science & Technolo-gy. -2021. -109, 169–196. DOI:10.1016/j.tifs.2021.01.026.

7.            https://doi.org/10.1016/B978-0-12-814831-0.00024-5

8. Kholmuminov A.A., Bekmirzayeva G.Z., Yuldashev M.H., Kabulov B.D. Thin-layer chromatography of sericin, adipose hairs and fibroin of natural silk. soed. – Tashkent. -1995. -No. 4. -pp.588-590.

9. Avazova O.B., Rashidova S.Sh., Otazhonov A.Sh., Khuzhamshukurov N.A. Study of chitosan from Tenebrio molitor larvae and its properties. //International Conference Actual problems of the development of bioorganic chemistry: Tez. dokl. – Toshkent, 2023. – pp. 229-230.

10. Kozlov G.V., Dolbii I.V. Fractal version of the Mark-Kuhn-Hauvink equation.//High molecular weight compounds. – Moscow.-2002.-Volume 44. -No. 1. pp. 115-118.

11. Sherova Z.U., Nasriddinov A.S., Kholov Sh.E. et al. Molecular weight and molecular mass distribution of sericin protein extracted from cocoon waste Bombyx mori. //Izvestiya vuzov. Applied chemistry and biotechnology. -2022;12(4):547-556.

12.          https://studfile.net/preview/3565091/page:10

13. Zimon A.D. Colloidal chemistry. -M.: Krasnad, 2019. -342 p.

To cite this article: O. B. Avazova, S. Sh. Rashidova, N. A. Khuzhamshukurov Studying the interaction of sericin and chitosan tenebrio molitor // Uzbek chemical journal. -2024. – Nr3. - Pp. 78-83. 

Received: 07.02.2024; Accepted: 08.05.2024; Published: 12.07.2024.

 

***

ANALYTICAL CHEMISTRY

UDС 543.251:541.25:541.13:541.8

Q. S. BOQIYEV, M. N. SAYFIYEV, G. SH. SHAMSIDDINOVA, D. A. ZIYAYEV,  U. U. RUZMETOV

DETERMINATION OF Hg(II) ION BY INVERSION VOLTAMMETRIC METHOD USING GRAPHITE ELECTRODE MODIFIED WITH ANTHRANILIC ACID

National University of Uzbekistan,qudratboqiyev1997@gmail.com

Abstract. Background. Pollution of the environment with heavy metals, including mercury, poses a serious environmental hazard. Its determination, even in microconcentrations, is relevant.

Purpose. Determination of Hg(II) ions by voltammetric method on a graphite electrode modi-fied with anthranilic acid.

Methodology. The object of the study is anthranilic acid and Hg(II) ions. The stripping volt-ammetric method for their analysis was used.

Originality. A graphite electrode modified with anthranilic acid for the selective determination of Hg(II) by voltammetric method was used for the first time.

Findings. Voltametric characteristics of the cathodic behavior of Hg(II) ions in the background electrolyte, with buffer solutions, at different pH, for different periods of electrolysis were recorded.

Key words: anthranilic acid, Hg(II) ions, stripping voltammetry, modified graphite electrode.

Highlights:

- graphite electrode modified with anthranilic acid;

- stripping voltammetric method for Hg(II) ion analysis;

- variable parameters: electrolyte background, buffer, pH, time.

References

1.              Wang Q., Wang T., Lin H. Disposable Faraday cage-type aptasensor for ultrasensitive deter-mination of sub-picomolar Hg(II) via fast scan voltammetry // Sensors and Actuators B, Chemical. -Volume 320. -2020.–P.128349.

2.              Rafiquddin S., Boika A. Mercury(II) stripping electroanalysis with hot microelectrodes // Elec-trochimica Acta. -Volume 409. -2022.–P.139962.

3.              Ali A. Ensafi, G.R. Toghani, S.H. Mirmoghtadaei. Determination of mercury at the rotating gold electrode by anodic stripping voltammetry// Metrohm. -Volume 31. -11 April 2017.–P.2134–2142.

4.              Silva L., Mutz Y.S., Stefano J.S., Conté-Júnior C.A., De Queiroz Ferreira R. A simple and re-liable electroanalytical method employing a disposable commercial electrode for simultaneous determination of lead(II) and mercury(II) in beer // Journal of Food Composition and Analy-sis. -Volume 110.- 2022.–P.104564.

5.              D.A. Ziyayev, M.N. Sayfiyev. Analytical possibilities of the inversion voltamperometry of cadmium determination by carbon-paste electrode modified by EDTA // Modern sturcture and development of science in our life 1 (1). -2019.–P. 98-104.

6.              Ghanei-Motlagh M., Baghayeri M. Application of N,S-dual-doped carbon/sepiolite clay hy-brid material for electrochemical detection of mercury(II) in water resources // Materials Chemistry and Physics. -Volume 285. -2022.–P.126127

7.              M. Sayfiyev, Q. Boqiyev, U. Axmadjonov, M. Abduqahhorova, D. Ziyayev. Inversion-voltamperometrics in determination of copper ions from soil importance of the method //AIP Conference Proceedings 2432(1). -2022. –P. 1012-1015.

8.              Gayathri J., Selvan K.S. Narayanan SS. Fabrication of carbon nanotube and synthesized Oc-tadentate ligand modified electrode for determination of Hg(II) in Sea water and Lake water using square wave anodic stripping voltammetry // Sensing and Bio-sensing Research.-Volume 19. -2018.–P.1-6.

9.              Luiz H. Marcolino-Junior, Bruno C. Janegitz,Bruna C. Lourencao, Orlando Fatibello-Filho. Anodic stripping voltammetric determination of mercury in water using a chitosan-modified carbon paste electrode// Analytical Letters. -Volume 40. -2007.–P.3119–3128.

10.          Sarvestani M.R.J., Madrakian T., Afkhami A., Ajdari B. Applicability of a synthesized mela-mine based covalent organic framework as a novel ionophore for the potentiometric determi-nation of mercury(II): Computational and experimental studies //Microchemical Journal. -Volume 188.- 2023.–P.108483.

11.          D.A. Ziyayev, M.N. Sayfiyev, N. Atakulova. Inversion voltammetric determination of copper (II) and zinc using graphite-containing electrodes modified with edta // Uzbekiston Kimyo Journal. -Volume 5. -2021.–P.71-76.

12.    M. Vanitha, N. Balasubramanian, I Made Joni, Camellia Panatarani. Detection of Mercury Ions using L-Cysteine Modified Electrodes by Anodic Stripping Voltammetric Method// AIP conference proceedings. Volume 25, 15 June 2018.–P.325–331.

13.    Sayfiyev M.N., Boqiyev Q.S., Rustamov E.M., Ziyayev D.A. Determination of zinc ion by inversion voltammetric method using an electrochemical sensor from the composition of wastewater // UzMU xabarlari. -Volume 3/1. -2023.–P. 414-417.

14.    Yang Z. Voltammetry for quantitative determination of trace mercury ions in water via acety-lene black modified carbon paste electrode //Alexandria Engineering Journal. -Volume 87. -2024.–P.107–113.

15.    Li Z., Xia S., Wang J., Bian C., Tong J. Determination of trace mercury in water based on N-octylpyridinium ionic liquids preconcentration and stripping voltammetry // Journal of Hazardous Materials. -Volume 301. -2016.–P.206-213.

To cite this article: Q. S. Boqiyev, M. N. Sayfiyev, G. SH. SHamsiddinova, D. A. Ziyayev,  U. U. Ruzmetov Determination of Hg(II) ion by inversion voltammetric method using graphite electrode modified with anthranilic acid // Uzbek chemical journal. -2024. – Nr3. - Pp. 84-90. 

Received: 10.05.2024; Accepted: 30.05.2024; Published: 12.07.2024.

 

***

UDС 543.422.3

U. U. Ruzmetov, M. I. Karshiboeva, M. Z. Mukhammadieva, J. I. Usmonaliev, Z. A. Smanova

ALIZARIN RED C  ANALYTICAL REAGENT FOR SORPTION-SPECTROSCOPIC DETERMINATION OF Zn(II) ION

Mirzo Ulugbek National University of Uzbekistan, Uzbekistan, E-mail: ruzmetov.uchkun@mail.ru

Abstract. Background. The increasing pollution of natural waters by heavy metals has become a major problem in recent years, so their determination requires separation and pre-concentration tech-niques.

Purpose. Development of a hybrid, sensitive sorption-spectrophotometric method for determining the Zn(II) ion using a polyethylene polyamine polyacrylonitrile (PPF-1) matrix immobilized in alizarin red C.

Methodology. Research was carried out using a spectrophotometer, diffuse reflectance spectroscopy, IR spectroscopy and methods of mathematical statistics.

Originality. For the first time, alizarin red C (AKS) was immobilized on a modified PPF-1 and a new matrix was used for the effective determination of Zn(II)

Findings. The sensitivity of Zn(II) determination by selective immobilized ACS was maximum at 522 nm. The optimal pH for determining Zn(II) is 5.0 at room temperature. The linear range was found to be 6.5-40 mg/L, the detection limit was 0.6 mg/L, and the adsorption percentage was about 97%.

Key words: Alizarin red C, Zn(II), PPF-1, spectrophotometry, sorption spectrometry, diffusion reflectance spectrum, IR spectrometry.

Highlights:

- the reagent is completely on a polymer substrate.

-the AKC-immobilized polymer matrix was selective in the determination of Zn(II)

- a new absorption band appears which is characteristic of –O–Zn bonds.

 

References

1.     Le Ngoc Tu, Le Tan. Spectrophotometric study of a new Complexation between Zn (II) and 5-Bromosalicylaldehyde Thiosemicarbazone and Its Application // Egyptian Journal of Chem-istry. -2021. -V-64. -I-9. -P-4739-4745.

2.     A. K.Sharma, I. Singh.  A rapid spectrophotometric method for trace determination of zinc // Food Analytical Methods. -2009. -V-2.  -P-311-316.

3.   Sabriye Aydinoglu. Iron and zinc determination in dietary supplements by flame atomic ab-sorption spectrophotometry // Brazilian Journal of Pharmaceutical Sciences. -2022. -V-58.

4.     Esraa Rasool Radhi. Spectrophotometric Determination and Biological Activity Study of Zn (II) Using a Newly Synthesized Azo Reagent Derivative from 4, 5-Bis (4-methoxyphenyl) Im-idazole // Fundamental and Applied Sciences. -2024. –V.20. -I-1. -P-214-222.

5.     Maha J Jabbar, Fatima A Wannas. Preconcentration and Spectroscopic estimation of Zn (II) by sensitive Cloud Point Extraction Technique using Imidazole Azo Reagent // Journal of Kufa for Chemical Sciences. -2022. -V-2. -I-9. -P-551-568.

6.     Hameed. U. H, Muhammad. B, Zahid. H, Faisal. S, Grzegorz. B. Deep eutectic solvents based assay for extraction and determination of zinc in fish and eel samples using FAAS // Journal of Molecular Liquids.-2021. -V-333.

7.     Ruzmetov, U. U., Jumaeva, E. S., Orziqulov, B. T., & Smanova, Z. A. (2023). Determination of iron in water by flame atomic absorption spectrometry with sorption preconcentration.//Zavodskaâ Laboratoriâ. Diagnostika Materialov. -89(12). -22–30. https://doi.org/10.26896/1028-6861-2023-89-12-22-30

8.     Ruzmetov, U. U., Jumayeva, E. S., & Smanova, Z. A. (2024). Adsorption–Atomic-Absorption determination of CU(II) ions in technogenic waters. //Journal of Analytical Chemistry. -79(5). -578–584. https://doi.org/10.1134/s1061934824050095

9.     Nilton. R.J, Maria.I .F. M. Preconcentration and Separation of Trace Amounts of Zn, Ni, Co Ions in Water Samples Using Eriochrome Red B/amberlyst A-26 Composite as Sorbent Before Determination By Flame Atomic Absorption Spectrometry // Revista Contemporânea. -2023. -V-3. -I-4. -P-3099-3121.

10. Feist B., Mikula B. Preconcentration of heavy metals on activated carbon and their determination in fruits by inductively coupled plasma optical emission spectrometry // Food Chem. – 2014. – V.147. – P.302-306. DOI: 10.1016/j.foodchem.2013.10.002.

11. Durduran E., Altundag H., Imamoglu M.,Yıldız S.Z., Tuzen M. Simultaneous ICP-OES determination of trace metals in water and food samples after their preconcentration on silica gel functionalized with N-(2-aminoethyl)-2,3-dihydroxybenzaldimine // Journ.of Indus.&Engin.Chem. – 2015. – V.27. – P.245-250. DOI: 10.1016/j.jiec.2014.12.041.

12. Alhagri, I. A., Al-Hakimi, A. N., Al-Hazmy, S. M., & Albadri, A. E. (2024). Determination of trace and heavy metals in bottled drinking water in Yemen by ICP-MS. //Results in Chemistry. -101558. https://doi.org/10.1016/j.rechem.2024.101558

13. Lagerström, M., Field, M., Séguret, M., Fischer, L., Hann, S., & Sherrell, R. (2013). Automat-ed on-line flow-injection ICP-MS determination of trace metals (Mn, Fe, Co, Ni, Cu and Zn) in open ocean seawater: Application to the GEOTRACES program. //Marine Chemistry. -155. –Р.71–80. https://doi.org/10.1016/j.marchem.2013.06.001

 

To cite this article: U. U. Ruzmetov, M. I. Karshiboeva, M. Z. Mukhammadieva, J. I. Usmonaliev, Z. A. Smanova Alizarin red c  analytical reagent for sorption-spectroscopic determination of Zn(II) ion  // Uzbek chemical journal. -2024. – Nr3. - Pp. 91-95. 

Received: 04.07.2024; Accepted: 10.07.2024; Published: 12.07.2024.

 

 

85 PDF